化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4553-4563.DOI: 10.11949/0438-1157.20210298
收稿日期:
2021-03-01
修回日期:
2021-05-17
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
钟文琪
作者简介:
刘曙光(1995—),男,硕士研究生,基金资助:
Shuguang LIU(),Wenqi ZHONG(),Xi CHEN
Received:
2021-03-01
Revised:
2021-05-17
Online:
2021-09-05
Published:
2021-09-05
Contact:
Wenqi ZHONG
摘要:
构建了X光层析成像(XCT)气固流动参数测量系统,基于锥形束滤波反投影算法(FDK)开发了CT三维重建软件,并设计了射流识别及量化算法。基于以上方法获得了不同流化风速下床料粒径dp、布风板孔口直径d0和布风板孔口均分面积A0对射流形态结构和几何特征的影响规律。结果表明平均射流长度L、最大直径D和体积V与床料粒径dp成反比,与孔口直径d0和孔口均分面积A0成正比,最终拟合了流化床平均射流长度关联式。
中图分类号:
刘曙光, 钟文琪, 陈曦. 基于XCT的气固流化床布风板射流特征研究[J]. 化工学报, 2021, 72(9): 4553-4563.
Shuguang LIU, Wenqi ZHONG, Xi CHEN. Experiment study of jetting characteristic in gas-solid fluidized bed using X-ray computed tomography[J]. CIESC Journal, 2021, 72(9): 4553-4563.
材料 | 直径dp/ mm | 密度ρp/ (kg/m3) | 空隙率εb | 最小流化速度Umf/(m/s) |
---|---|---|---|---|
石英砂 | 0.20~0.35 | 2650 | 0.50 | 0.07 |
石英砂 | 0.35~0.45 | 2650 | 0.48 | 0.14 |
石英砂 | 0.45~0.60 | 2650 | 0.45 | 0.29 |
表1 床料颗粒物性
Table 1 Properties of bed material particles
材料 | 直径dp/ mm | 密度ρp/ (kg/m3) | 空隙率εb | 最小流化速度Umf/(m/s) |
---|---|---|---|---|
石英砂 | 0.20~0.35 | 2650 | 0.50 | 0.07 |
石英砂 | 0.35~0.45 | 2650 | 0.48 | 0.14 |
石英砂 | 0.45~0.60 | 2650 | 0.45 | 0.29 |
布风板类型 | 孔口数量n0 | 孔口直径d0/mm | 孔口均分面积A0/mm2 |
---|---|---|---|
A-1 | 37 | 1 | 212 |
A-1.5 | 37 | 1.5 | 212 |
A-2 | 37 | 2 | 212 |
B-1 | 61 | 1 | 129 |
表2 布风板结构参数
Table 2 Structural parameters of aeration plate
布风板类型 | 孔口数量n0 | 孔口直径d0/mm | 孔口均分面积A0/mm2 |
---|---|---|---|
A-1 | 37 | 1 | 212 |
A-1.5 | 37 | 1.5 | 212 |
A-2 | 37 | 2 | 212 |
B-1 | 61 | 1 | 129 |
1 | 马旺宇, 罗正鸿. Geldart-B类颗粒在气固流化床中的床层膨胀与流型转变[J]. 化工学报, 2019, 70(7): 2472-2479. |
Ma W Y, Luo Z H. Bed expansion and fluidized states change of Geldart-B particle gas-solid fluidized bed[J]. CIESC Journal, 2019, 70(7): 2472-2479. | |
2 | Vollmari K, Jasevičius R, Kruggel-Emden H. Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed[J]. Powder Technology, 2016, 291: 506-521. |
3 | Chen X, Zhong W Q, Heindel T J. Fluidization of cylinder particles in a fluidized bed[J]. Advanced Powder Technology, 2017, 28(3): 820-835. |
4 | Chen X, Zhong W Q, Heindel T J. Orientation of cylindrical particles in a fluidized bed based on stereo X-ray particle tracking velocimetry (XPTV)[J]. Chemical Engineering Science, 2019, 203: 104-112. |
5 | 刘沁雯, 钟文琪, 邵应娟, 等. 固体燃料流化床富氧燃烧的研究动态与进展[J]. 化工学报, 2019, 70(10): 3791-3807. |
Liu Q W, Zhong W Q, Shao Y J, et al. Research trends and recent advances of oxy-fuel combustion of solid fuels in fluidized beds[J]. CIESC Journal, 2019, 70(10): 3791-3807. | |
6 | 孙子文, 陈岱琳, 钟文琪, 等. 快速流化床颗粒团絮特征的MP-PIC数值模拟[J]. 化工学报, 2018, 69(8): 3443-3451. |
Sun Z W, Chen D L, Zhong W Q, et al. MP-PIC simulation of particle clusters in fast fluidized bed risers[J]. CIESC Journal, 2018, 69(8): 3443-3451. | |
7 | Lu H L, He Y R, Gidaspow D, et al. Size segregation of binary mixture of solids in bubbling fluidized beds[J]. Powder Technology, 2003, 134(1/2): 86-97. |
8 | Si C D, Guo Q J. Fluidization characteristics of binary mixtures of biomass and quartz sand in an acoustic fluidized bed[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9773-9782. |
9 | Zhang Y, Jin B S, Zhong W Q. Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(3): 745-754. |
10 | Karami S, Goharrizi A S, Abolpour B, et al. Numerical study of the particles segregation phenomenon in the fluidized beds[J]. Multidiscipline Modeling in Materials & Structures, 2019, 16(3): 538-556. |
11 | Xu P F, Li Y X, Wang Y J, et al. Gas-solid mixing characteristics of Geldart B particles in a fluidized bed with different height-to-diameter ratios[J]. Journal of Physics: Conference Series, 2021, 1732: 012166. |
12 | Rowe P N, Macgillivray H J, Cheesman D J. Gas discharge from orifice into a gas fluidized bed[J]. Trans. IChemE, 1979, 57(3): 194-199. |
13 | Rees A C, Davidson J F, Dennis J S, et al. The nature of the flow just above the perforated plate distributor of a gas-fluidised bed, as imaged using magnetic resonance[J]. Chemical Engineering Science, 2006, 61(18): 6002-6015. |
14 | Müller C R, Holland D J, Davidson J F, et al. Geometrical and hydrodynamical study of gas jets in packed and fluidized beds using magnetic resonance[J]. The Canadian Journal of Chemical Engineering, 2009, 87(4): 517-525. |
15 | Pore M, Holland D J, Chandrasekera T C, et al. Magnetic resonance studies of a gas-solids fluidised bed: jet-jet and jet-wall interactions[J]. Particuology, 2010, 8(6): 617-622. |
16 | Escudero D R, Heindel T J. Characterizing jetting in an acoustic fluidized bed using X-ray computed tomography[J]. Journal of Fluids Engineering, 2016, 1(4): 41309. |
17 | Panariello L, Materazzi M, Solimene R, et al. X-ray imaging of horizontal jets in gas fluidised bed nozzles[J]. Chemical Engineering Science, 2017, 164: 53-62. |
18 | Merry J M D. Penetration of vertical jets into fluidized beds[J]. AIChE Journal, 1975, 21(3): 507-510. |
19 | Vaccaro S, Musmarra D, Petrecca M. Evaluation of the jet penetration depth in gas-fluidized beds by pressure signal analysis[J]. International Journal of Multiphase Flow, 1997, 23(4): 683-698. |
20 | Vaccaro S, Musmarra D, Petrecca M. A technique for measurement of the jet penetration height in fluidized beds by pressure signal analysis[J]. Powder Technology, 1997, 92(3): 223-231. |
21 | Wen C Y, Deole N R, Chen L H. A study of jets in a three-dimensional gas fluidized bed[J]. Powder Technology, 1982, 31(2): 175-184. |
22 | Cleaver J A S, Ghadiri M, Tuponogov V G, et al. Measurement of jet angles in fluidized beds[J]. Powder Technology, 1995, 85(3): 221-226. |
23 | Yang W C, Keairns D L. Estimating the jet penetration depth of multiple vertical grid jets[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(4): 317-320. |
24 | Filla M, Massimilla L, Vaccaro S. Gas jets in fluidized beds: the influence of particle size, shape and density on gas and solids entrainment[J]. International Journal of Multiphase Flow, 1983, 9(3): 259-267. |
25 | Blake T R, Webb H, Sunderland P B. The nondimensionalization of equations describing fluidization with application to the correlation of jet penetration height[J]. Chemical Engineering Science, 1990, 45(2): 365-371. |
26 | Sidky E Y, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17): 4777-4807. |
27 | Hsieh J. Computed Tomography Principles, Design, Artifacts, and Recent Advances [M]. 2nd ed. Wiley,2009. |
28 | Kingston T A, Morgan T B, Geick T A, et al. A cone-beam compensated back-projection algorithm for X-ray particle tracking velocimetry[J]. Flow Measurement and Instrumentation, 2014, 39: 64-75. |
29 | Morgan T B, Heindel T J. Sensitivity of X-ray computed tomography measurements of a gas-solid flow to variations in acquisition parameters[J]. Flow Measurement and Instrumentation, 2017, 55: 82-90. |
30 | Jaffray D A, Wong J W, Siewerdesen J H. Cone beam computed tomography with a flat panel imager: US7471765[P]. 2008-12-30. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[3] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[4] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[5] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[6] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[7] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[8] | 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999. |
[9] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[10] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
[11] | 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061. |
[12] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[13] | 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104. |
[14] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[15] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||