1 |
Gheitaghy A M, Saffari H, Mohebbi M. Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating[J]. Experimental Thermal and Fluid Science, 2016, 76: 87-97.
|
2 |
钟达文, 孟继安, 李志信. 朝下沟槽结构表面池沸腾换热[J]. 化工学报, 2016, 67(9): 3559-3565.
|
|
Zhong D W, Meng J A, Li Z X. Saturated pool boiling from downward facing structured surfaces with grooves[J]. CIESC Journal, 2016, 67(9): 3559-3565.
|
3 |
Chen S W, Hsieh J C, Chou C T, et al. Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes[J]. Sensors and Actuators A: Physical, 2007, 139(1/2): 78-87.
|
4 |
Cooke D, Kandlikar S G. Effect of open microchannel geometry on pool boiling enhancement[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1004-1013.
|
5 |
Kandlikar S G. Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer[J]. Applied Physics Letters, 2013, 102(5): 051611.
|
6 |
Li C H, Li T, Hodgins P, et al. Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3146-3155.
|
7 |
Ji X B, Xu J L, Zhao Z W, et al. Pool boiling heat transfer on uniform and non-uniform porous coating surfaces[J]. Experimental Thermal and Fluid Science, 2013, 48: 198-212.
|
8 |
Min D H, Hwang G S, Usta Y, et al. 2-D and 3-D modulated porous coatings for enhanced pool boiling[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2607-2613.
|
9 |
Wu W, Du J H, Hu X J, et al. Pool boiling heat transfer and simplified one-dimensional model for prediction on coated porous surfaces with vapor channels[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1117-1125.
|
10 |
Godinez J C, Fadda D, Lee J, et al. Enhancement of pool boiling heat transfer in water on aluminum surface with high temperature conductive microporous coating[J]. International Journal of Heat and Mass Transfer, 2019, 132: 772-781.
|
11 |
Zhang B J, Ganguly R, Kim K J, et al. Control of pool boiling heat transfer through photo-induced wettability change of titania nanotube arrayed surface[J]. International Communications in Heat and Mass Transfer, 2017, 81: 124-130.
|
12 |
Kim J S, Girard A, Jun S, et al. Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2018, 118: 802-811.
|
13 |
Maeng Y H, Song S L, Lee J Y. Unaffectedness of improved wettability on critical heat flux enhancement with TiO2 sputtered surface[J]. Applied Physics Letters, 2016, 108(7): 074101.
|
14 |
Kim J, Jun S, Laksnarain R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002.
|
15 |
Ho J Y, Wong K K, Leong K C. Saturated pool boiling of FC-72 from enhanced surfaces produced by selective laser melting[J]. International Journal of Heat and Mass Transfer, 2016, 99: 107-121.
|
16 |
张永海, 魏进家, 孔新. 交错排列柱状微结构射流冲击强化换热实验研究[J]. 工程热物理学报, 2015, 36(7): 1476-1480.
|
|
Zhang Y H, Wei J J, Kong X. Enhanced boiling heat transfer of FC-72 over staggered micro-pin-finned surfaces with submerged jet impingement[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1476-1480.
|
17 |
丁婕, 魏进家, 孔新, 等. 机械振荡下微结构表面沸腾换热性能实验研究[J]. 工程热物理学报, 2016, 37(1): 164-167.
|
|
Ding J, Wei J J, Kong X, et al. Experimental study of boiling heat transfer enhancement on micro-pin-finned surface with mechanical oscillation[J]. Journal of Engineering Thermophysics, 2016, 37(1): 164-167.
|
18 |
Kuo C J, Peles Y. Local measurement of flow boiling in structured surface microchannels[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4513-4526.
|
19 |
Kandlikar S G, Kuan W K, Willistein D A, et al. Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites[J]. Journal of Heat Transfer, 2006, 128(4): 389-396.
|
20 |
左少华, 赵晓玥, 王杰阳, 等. 铝基Al2O3纳米多孔表面大容积池沸腾实验[J]. 化工进展, 2015, 34(5): 1254-1258.
|
|
Zuo S H, Zhao X Y, Wang J Y, et al. Experimental study on pool boiling of aluminum base Al2O3 nano-porous surface[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1254-1258.
|
21 |
Webb R L. Nucleate boiling on porous coated surfaces[J]. Heat Transfer Engineering, 1983, 4(3/4): 71-82.
|
22 |
Li C, Peterson G P. Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces[J]. Journal of Heat Transfer, 2007, 129(11): 1465-1475.
|
23 |
Gouda R K, Pathak M, Khan M K. Pool boiling heat transfer enhancement with segmented finned microchannels structured surface[J]. International Journal of Heat and Mass Transfer, 2018, 127: 39-50.
|
24 |
Chen G L, Li C H. Combined effects of liquid wicking and hydrodynamic instability on pool boiling critical heat flux by two-tier copper structures of nanowires and microgrooves[J]. International Journal of Heat and Mass Transfer, 2019, 129: 1222-1231.
|
25 |
Deng D X, Feng J Y, Huang Q S, et al. Pool boiling heat transfer of porous structures with reentrant cavities[J]. International Journal of Heat and Mass Transfer, 2016, 99: 556-568.
|
26 |
Jaikumar A, Kandlikar S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 88: 652-661.
|
27 |
Rahman M M, Pollack J, McCarthy M. Increasing boiling heat transfer using low conductivity materials[J]. Scientific Reports, 2015, 5: 13145.
|
28 |
Najafpour S, Moosavi A, Rad S V. 2-D microflow generation on superhydrophilic nanoporous substrates using epoxy spots for pool boiling enhancement[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104553.
|
29 |
Utaka Y, Xie T X, Chen Z H, et al. Critical heat flux enhancement in narrow gaps via different-mode-interacting boiling with nonuniform thermal conductance inside heat transfer plate[J]. International Journal of Heat and Mass Transfer, 2019, 133: 702-711.
|
30 |
Xie T X, Utaka Y, Chen Z H, et al. Effect of heating surface size on critical heat flux in different-mode-interacting boiling inside narrow gaps for water[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118543.
|