化工学报 ›› 2022, Vol. 73 ›› Issue (1): 97-109.DOI: 10.11949/0438-1157.20211241
丰闪闪1(),刘晓斌1,郭石麟1,何兵兵2,高振国1(),陈明洋1(),龚俊波1,3
收稿日期:
2021-08-26
修回日期:
2021-09-30
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
高振国,陈明洋
作者简介:
丰闪闪(1997—),女,硕士研究生,基金资助:
Shanshan FENG1(),Xiaobin LIU1,Shilin GUO1,Bingbing HE2,Zhenguo GAO1(),Mingyang CHEN1(),Junbo GONG1,3
Received:
2021-08-26
Revised:
2021-09-30
Online:
2022-01-05
Published:
2022-01-18
Contact:
Zhenguo GAO,Mingyang CHEN
摘要:
锂金属电池具有较高的理论比容量和最低的氧化还原电位,被认为是最有前途的电化学储能器件之一。然而,金属锂阳极上的锂枝晶所引起的一些关键问题严重阻碍了其实际应用。首先从离子浓度、电场、应力、温度四方面因素介绍了多形貌锂枝晶成核和生长机理;同时,总结了一些用于表征锂枝晶的先进技术;并归纳了抑制锂枝晶形成的策略,包括控制锂枝晶成核的亲锂表面电极、非均相晶核,控制锂枝晶生长的三维导电基体、物理涂层,以及具有固定阴离子的纳米结构电解质和形成球形锂沉积的盐包水电解质。最后提出了挑战和展望,探讨了锂枝晶的未来研究方向。
中图分类号:
丰闪闪, 刘晓斌, 郭石麟, 何兵兵, 高振国, 陈明洋, 龚俊波. 锂枝晶的成核、生长与抑制[J]. 化工学报, 2022, 73(1): 97-109.
Shanshan FENG, Xiaobin LIU, Shilin GUO, Bingbing HE, Zhenguo GAO, Mingyang CHEN, Junbo GONG. Nucleation, growth and inhibition of lithium dendrites[J]. CIESC Journal, 2022, 73(1): 97-109.
图4 晶须状、苔藓状和树状锂枝晶形成的驱动力、影响因素和物理场汇总
Fig.4 Summary of the driving forces, influencing factors and physical fields of the formation of whisker-like, mossy-like and tree-like lithium dendrites
1 | Palacín M R, de Guibert A. Why do batteries fail? [J]. Science, 2016, 351(6273): 1253292. |
2 | Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16. |
3 | Janek J, Zeier W G. A solid future for battery development[J]. Nature Energy, 2016, 1(9): 1-4. |
4 | Zhai P Y, Peng H J, Cheng X B, et al. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries[J]. Energy Storage Materials, 2017, 7: 56-63. |
5 | Sun Y M, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 1-12. |
6 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
7 | Liu B, Zhang J G, Xu W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. |
8 | Shen X, Liu H, Cheng X B, et al. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. |
9 | Tan S J, Yue J P, Hu X C, et al. Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(23): 7802-7807. |
10 | Li L L, Li S Y, Lu Y Y. Suppression of dendritic lithium growth in lithium metal-based batteries[J]. Chemical Communications (Cambridge, England), 2018, 54(50): 6648-6661. |
11 | Han Y H, Jie Y L, Huang F Y, et al. Enabling stable lithium metal anode through electrochemical kinetics manipulation[J]. Advanced Functional Materials, 2019, 29(46): 1904629. |
12 | Tikekar M D, Choudhury S, Tu Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: 16114. |
13 | Sacci R L, Dudney N J, More K L, et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communications, 2014, 50(17): 2104. |
14 | Stark J K, Ding Y, Kohl P A. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium[J]. Journal of the Electrochemical Society, 2013, 160(9): D337-D342. |
15 | Chen X R, Yao Y X, Yan C, et al. A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries[J]. Angewandte Chemie, 2020, 132(20): 7817-7821. |
16 | Zou P, Sui Y, Zhan H, et al. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields[J]. Chemical Reviews, 2021, 121(10): 5986-6056. |
17 | Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261: 112-119. |
18 | Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. |
19 | Park M S, Ma S B, Lee D J, et al. A highly reversible lithium metal anode[J]. Scientific Reports, 2014, 4: 3815. |
20 | Lin D, Liu Y, Li Y, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019, 11(4): 382-389. |
21 | Wang Z, Sun Z, Li J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chemical Society Reviews, 2021, 50(5): 3178-3210. |
22 | Sand H J S. III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 1(1): 45-79. |
23 | Fleury V, Chazalviel J N, Rosso M, et al. The role of the anions in the growth speed of fractal electrodeposits[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 290(1/2): 249-255. |
24 | Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367. |
25 | Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3): 227-235. |
26 | Kushima A, So K P, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. |
27 | Bai P, Guo J Z, Wang M, et al. Interactions between lithium growths and nanoporous ceramic separators[J]. Joule, 2018, 2(11): 2434-2449. |
28 | Liu H, Cheng X B, Jin Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. Energy Chem, 2019, 1(1): 100003. |
29 | Jana A, García R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552-565. |
30 | Shen X, Zhang R, Shi P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
31 | Yun Q B, He Y B, Lv W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939. |
32 | Gao M D, Li H, Xu L, et al. Lithium metal batteries for high energy density: fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. |
33 | Aryanfar A, Brooks D J, Colussi A J, et al. Thermal relaxation of lithium dendrites[J]. Physical Chemistry Chemical Physics, 2015, 17(12): 8000-8005. |
34 | Li L, Basu S, Wang Y, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383): 1513-1516. |
35 | Jones B. Review of aragonite and calcite crystal morphogenesis in thermal spring systems[J]. Sedimentary Geology, 2017, 354: 9-23. |
36 | Jones B, Renaut R W, et al. Noncrystallographic calcite dendrites from hot-spring deposits at lake bogoria, Kenya[J]. Journal of Sedimentary Research, 1995, 65A: 154-169. |
37 | Zhao C L, Lu Y X, Yue J M, et al. Advanced Na metal anodes[J]. Journal of Energy Chemistry, 2018, 27(6): 1584-1596. |
38 | Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
39 | Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73. |
40 | Xu X L, Wang H, Xie Y Z, et al. Graphitized mesoporous carbon derived from ZIF-8 for suppressing sulfation in lead acid battery and dendritic lithium formation in lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165(13): A2978-A2984. |
41 | Fang C C, Li J X, Zhang M H, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. |
42 | Rong G L, Zhang X Y, Zhao W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution[J]. Advanced Materials, 2017, 29(13): 1606187. |
43 | Zeng Z, Liang W I, Liao H G, et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries viain situ TEM[J]. Nano Letters, 2014, 14(4): 1745-1750. |
44 | Deng Z, Lin X, Huang Z Y, et al. Recent progress on advanced imaging techniques for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000806. |
45 | Ebner M, Marone F, Stampanoni M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716-720. |
46 | Yu S H, Huang X, Brock J D, et al. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study[J]. Journal of the American Chemical Society, 2019, 141(21): 8441-8449. |
47 | Chandrashekar S, Trease N M, Chang H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nature Materials, 2012, 11(4): 311-315. |
48 | Ma L B, Cui J, Yao S S, et al. Dendrite-free lithium metal and sodium metal batteries[J]. Energy Storage Materials, 2020, 27: 522-554. |
49 | Chang H J, Ilott A J, Trease N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. Journal of the American Chemical Society, 2015, 137(48): 15209-15216. |
50 | Nishikawa K, Mori T, Nishida T, et al. Li dendrite growth and Li+ ionic mass transfer phenomenon[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 84-89. |
51 | Li B, Wang Y, Yang S B. A material perspective of rechargeable metallic lithium anodes[J]. Advanced Energy Materials, 2018, 8(13): 1702296. |
52 | Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895. |
53 | Liang Z, Zheng G, Liu C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916. |
54 | Matsuda S, Kubo Y, Uosaki K, et al. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929. |
55 | Bai S Y, Sun Y, Yi J, et al. High-power Li-metal anode enabled by metal-organic framework modified electrolyte[J]. Joule, 2018, 2(10): 2117-2132. |
56 | Lu L L, Zhang Y, Pan Z, et al. Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance[J]. Energy Storage Materials, 2017, 9: 31-38. |
57 | Liang Z, Lin D C, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. PNAS, 2016, 113(11): 2862-2867. |
58 | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. |
59 | Li Y J, Jiao J Y, Bi J P, et al. Controlled deposition of Li metal[J]. Nano Energy, 2017, 32: 241-246. |
60 | Wu S L, Zhang Z Y, Lan M H, et al. Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes[J]. Advanced Materials, 2018, 30(9): 1705830. |
61 | Zhang Y, Luo W, Wang C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. PNAS, 2017, 114(14): 3584-3589. |
62 | Zhang C, Lv W, Zhou G M, et al. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(21): 1703404. |
63 | Liu Y, Li B, Liu J H, et al. Pre-planted nucleation seeds for rechargeable metallic lithium anodes[J]. Journal of Materials Chemistry A, 2017, 5(35): 18862-18869. |
64 | Yan K, Lu Z D, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1: 16010. |
65 | Yang C P, Yao Y G, He S M, et al. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Advanced Materials, 2017, 29(38): 1702714. |
66 | Cheng X B, Zhao M Q, Chen C, et al. Nanodiamonds suppress the growth of lithium dendrites[J]. Nature Communications, 2017, 8(1): 336. |
67 | Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11): 2155-2162. |
68 | Cheng X B, Peng H J, Huang J Q, et al. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries[J]. ACS Nano, 2015, 9(6): 6373-6382. |
69 | Zuo T T, Wu X W, Yang C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials, 2017, 29(29): 1700389. |
70 | Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014, 10(21): 4257-4263. |
71 | Heine J, Rodehorst U, Qi X, et al. Using polyisobutylene as a non-fluorinated binder for coated lithium powder (CLiP) electrodes[J]. Electrochimica Acta, 2014, 138: 288-293. |
72 | Park J, Jeong J, Lee Y, et al. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries[J]. Advanced Materials Interfaces, 2016, 3(11): 1600140. |
73 | Ryou M H, Lee Y M, Lee Y, et al. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating[J]. Advanced Functional Materials, 2015, 25(6): 834-841. |
74 | Hao X M, Zhu J, Jiang X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators[J]. Nano Letters, 2016, 16(5): 2981-2987. |
75 | Lee H, Lee D J, Kim Y J, et al. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries[J]. Journal of Power Sources, 2015, 284: 103-108. |
76 | Moon G H, Kim H J, Chae I S, et al. An artificial solid interphase with polymers of intrinsic microporosity for highly stable Li metal anodes[J]. Chemical Communications, 2019, 55(44): 6313-6316. |
77 | Zhu B, Jin Y, Hu X Z, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017, 29(2): 1603755. |
78 | Qi L Y, Shang L R, Wu K, et al. An interfacial layer based on polymers of intrinsic microporosity to suppress dendrite growth on Li metal anodes[J]. Chemistry-A European Journal, 2019, 25(52): 12052-12057. |
79 | Yan K, Lee H W, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J]. Nano Letters, 2014, 14(10): 6016-6022. |
80 | Li N W, Yin Y X, Yang C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. |
81 | Zheng G Y, Wang C, Pei A, et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating[J]. ACS Energy Letters, 2016, 1(6): 1247-1255. |
82 | Liu K, Pei A, Lee H R, et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer[J]. Journal of the American Chemical Society, 2017, 139(13): 4815-4820. |
83 | Tikekar M D, Archer L A, Koch D L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions[J]. Journal of the Electrochemical Society, 2014, 161(6): A847-A855. |
84 | Tu Z, Nath P, Lu Y, et al. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries[J]. Accounts of Chemical Research, 2015, 48(11): 2947-2956. |
85 | Lu Y Y, Das S K, Moganty S S, et al. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries[J]. Advanced Materials, 2012, 24(32): 4430-4435. |
86 | Choudhury S, Mangal R, Agrawal A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications, 2015, 6: 10101. |
87 | Li Y, Wong K W, Ng K M. Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries[J]. Chemical Communications, 2016, 52(23): 4369-4372. |
88 | Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074. |
89 | Wang Z X, Sun C G, Shi Y, et al. A salt-derived solid electrolyte interphase by electroreduction of water-in-salt electrolyte for uniform lithium deposition[J]. Journal of Power Sources, 2019, 439: 227073. |
90 | Xiao J. How lithium dendrites form in liquid batteries[J]. Science, 2019, 366(6464): 426-427. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[3] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[8] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[9] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[10] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[11] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[12] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[13] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[14] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[15] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||