化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4419-4428.DOI: 10.11949/0438-1157.20220701
收稿日期:
2022-05-16
修回日期:
2022-08-11
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
宗原
作者简介:
吴诗鸣(1995—),男,硕士研究生,2238122325@qq.com
基金资助:
Shiming WU(), Haoning CHEN, Yuan ZONG(), Zhimei XU, Ling ZHAO
Received:
2022-05-16
Revised:
2022-08-11
Online:
2022-10-05
Published:
2022-11-02
Contact:
Yuan ZONG
摘要:
冶金硅氢氯化流化床是目前多晶硅生产工艺中实现四氯化硅(silicon tetrachloride, STC)循环利用的关键反应器。基于MP-PIC方法建立了冶金硅氢氯化流化床反应器模型。模型中反应源项采用总包反应动力学进行计算。在网格以及计算颗粒包含的真实颗粒数量无关性检验的基础上,对反应器内三氯氢硅(trichlorosilane, TCS)初始浓度进行了无关性检验。模型验证结果表明,模拟结果与实验值符合良好。反应器特征分析结果表明:TCS产率受化学平衡与气固两相流动因素共同控制;反应器操作压力对TCS产率的影响较小;提高进口H2/STC摩尔比,可以提高TCS产率但会降低H2的转化率。
中图分类号:
吴诗鸣, 陈皓宁, 宗原, 许志美, 赵玲. 基于MP-PIC方法的冶金硅氢氯化流化床反应器模拟[J]. 化工学报, 2022, 73(10): 4419-4428.
Shiming WU, Haoning CHEN, Yuan ZONG, Zhimei XU, Ling ZHAO. Fluidized bed reactor simulation for hydrochlorination of metallurgical silicon based on MP-PIC method[J]. CIESC Journal, 2022, 73(10): 4419-4428.
参数 | 数值 |
---|---|
1.3878×10-2 | |
109.557 | |
2.532 | |
0.629 | |
2.075 |
表1 反应动力学参数[9,14]
Table 1 Parameters of kinetic equation[9,14]
参数 | 数值 |
---|---|
1.3878×10-2 | |
109.557 | |
2.532 | |
0.629 | |
2.075 |
序号 | 温度/K | H2/STC 摩尔比 | |||||
---|---|---|---|---|---|---|---|
1 | 823.15 | 2 | 182 | 0.9 | 400 | 6 | 14.14 |
2 | 823.15 | 2 | 182 | 0.9 | 400 | 9 | 12.32 |
3 | 873.15 | 2 | 182 | 0.9 | 400 | 6 | 14.39 |
4 | 873.15 | 2 | 182 | 0.9 | 400 | 9 | 13.64 |
5 | 823.15 | 2 | 182 | 4.5 | 400 | 6 | 14.38 |
6 | 823.15 | 2 | 182 | 4.5 | 400 | 9 | 14.44 |
7 | 873.15 | 2 | 182 | 4.5 | 400 | 6 | 14.55 |
8 | 873.15 | 2 | 182 | 4.5 | 400 | 9 | 14.35 |
表2 实验数据
Table 2 Experimental data
序号 | 温度/K | H2/STC 摩尔比 | |||||
---|---|---|---|---|---|---|---|
1 | 823.15 | 2 | 182 | 0.9 | 400 | 6 | 14.14 |
2 | 823.15 | 2 | 182 | 0.9 | 400 | 9 | 12.32 |
3 | 873.15 | 2 | 182 | 0.9 | 400 | 6 | 14.39 |
4 | 873.15 | 2 | 182 | 0.9 | 400 | 9 | 13.64 |
5 | 823.15 | 2 | 182 | 4.5 | 400 | 6 | 14.38 |
6 | 823.15 | 2 | 182 | 4.5 | 400 | 9 | 14.44 |
7 | 873.15 | 2 | 182 | 4.5 | 400 | 6 | 14.55 |
8 | 873.15 | 2 | 182 | 4.5 | 400 | 9 | 14.35 |
参数 | 数值 |
---|---|
颗粒密度/(kg/m3) | 2329.0 |
操作压力/Pa | 101325.0 |
紧密堆积空隙率 | 0.4696 |
颗粒-壁面碰撞恢复系数 | 0.9 |
颗粒-颗粒碰撞恢复系数 | 0.85 |
时间步长/s | 1.0×10-3 |
计算时间/s | 30.0 |
表3 模拟参数
Table 3 Parameters for simulation
参数 | 数值 |
---|---|
颗粒密度/(kg/m3) | 2329.0 |
操作压力/Pa | 101325.0 |
紧密堆积空隙率 | 0.4696 |
颗粒-壁面碰撞恢复系数 | 0.9 |
颗粒-颗粒碰撞恢复系数 | 0.85 |
时间步长/s | 1.0×10-3 |
计算时间/s | 30.0 |
0.82 | 0.12 | 0.06 |
0.07 | 0.623 | 0.307 |
0.009 | 0.862 | 0.129 |
表4 TCS初始摩尔分数
Table 4 Initial mole fraction of TCS
0.82 | 0.12 | 0.06 |
0.07 | 0.623 | 0.307 |
0.009 | 0.862 | 0.129 |
序号 | 文献[ | 本文的结果 |
---|---|---|
1 | -9.80% | -2.96% |
2 | -7.47% | 4.14% |
3 | 1.81% | 5.21% |
4 | 0.59% | 7.77% |
5 | -2.57% | -1.18% |
6 | -6.37% | -1.73% |
7 | 3.57% | 4.33% |
8 | 3.62% | 5.78% |
平均绝对偏差 | 4.48% | 4.13% |
表5 模拟值与实验值的相对误差
Table 5 Relative error between simulated results and experimental results
序号 | 文献[ | 本文的结果 |
---|---|---|
1 | -9.80% | -2.96% |
2 | -7.47% | 4.14% |
3 | 1.81% | 5.21% |
4 | 0.59% | 7.77% |
5 | -2.57% | -1.18% |
6 | -6.37% | -1.73% |
7 | 3.57% | 4.33% |
8 | 3.62% | 5.78% |
平均绝对偏差 | 4.48% | 4.13% |
1 | 余泽健. 现代芯片制造技术的展望[J]. 集成电路应用, 2021, 38(1): 4-5. |
Yu Z J. Prospect of modern chip manufacturing technology[J]. Application of IC, 2021, 38(1): 4-5. | |
2 | 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60. |
Zhang Y L, Chen X L, Zhou Z X, et al. Research progress of crystalline silicon solar cells[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 49-60. | |
3 | Goetzberger A, Hebling C. Photovoltaic materials, past, present, future[J]. Solar Energy Materials and Solar Cells, 2000, 62(1/2): 1-19. |
4 | 梁骏吾. 电子级多晶硅的生产工艺[J]. 中国工程科学, 2000, 2(12): 34-39. |
Liang J W. The production technology of electronic grade polycrystalline silicon [J]. Engineering Science, 2000, 2(12): 34-39. | |
5 | 沈峰, 陈其国, 潘维杰. 四氯化硅冷氢化技术研究进展[J]. 中国氯碱, 2019(9): 18-21. |
Shen F, Chen Q G, Pan W J. Progress in research of the cold hydrogenation of silicon tetrachloride[J]. China Chlor-Alkali, 2019(9): 18-21. | |
6 | 张晓辉, 周齐领. 太阳能级多晶硅装置工艺路线比较[J]. 化工设计, 2021, 31(4): 3-6, 22. |
Zhang X H, Zhou Q L. Comparison of process routes of solar-grade polysilicon plant[J]. Chemical Engineering Design, 2021, 31(4): 3-6, 22. | |
7 | 康启宇. 硅和四氯化硅耦合加氢反应制备三氯氢硅的工艺研究[D]. 上海: 上海交通大学, 2012. |
Kang Q Y. Study on the co-hydrogenation of silicon tetrachloride and silicon to produce trichlorosilane[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
8 | 康启宇, 丁伟杰, 肖文德, 等. 硅和四氯化硅耦合加氢反应体系的热力学分析[J]. 无机盐工业, 2012, 44(11): 26-29. |
Kang Q Y, Ding W J, Xiao W D, et al. Thermodynamic analysis of co-hydrogenation of silicon tetrachloride and silicon[J]. Inorganic Chemicals Industry, 2012, 44(11): 26-29. | |
9 | Mui J. Investigation of the hydrochlorination of SiCl4 [R]. Bellingham: JPL, 1983. |
10 | 丁伟杰. 冶金硅间接加氢制硅烷反应过程的机理及动力学研究[D]. 上海: 上海交通大学, 2015. |
Ding W J. Mechanism and kinetic studies of a two-step reaction process for metallurgical silicon to silane[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
11 | Sill T. Studies of the hydrochlorination of silicon to trichlorosilane in a fluidized bed reactor[D]. Bochum: University of Bochum, 2001. |
12 | Becker F. Modeling and simulations of hydrochlorination of silicon to trichlorosilane for the development of a technical fluidized bed reactor[D]. Aachen: RWTH Aachen University, 2005. |
13 | Daizo K, Levenspiel O. Fluidization Engineering[M]. 2nd ed. Massachusetts: Butterworth-Heinemann, 1991. |
14 | Colomb M, Palanki S, Sylvester N D. Modeling the hydrochlorination reaction in a laboratory-scale fluidized bed reactor[J]. Powder Technology, 2016, 292: 242-250. |
15 | Levenspiel O. Chemical Reaction Engineering[M]. New York: John Wiley & Sons Inc., 1998. |
16 | Cygon P. Reaction studies for the hydrochlorination of silicon in a laboratory fluidized bed system[D]. Cologne: University of Cologne, 1999. |
17 | Colomb M, Palanki S, Sylvester N D. Experimental verification of scalable model for the hydrochlorination reaction in a pilot-scale fluidized bed reactor[J]. Powder Technology, 2016, 301: 989-998. |
18 | Jakobsen H A. Chemical Reactor Modeling: Multiphase Reactive Flows[M]. Berlin: Springer, 2008. |
19 | Liu S S, Xiao W D. Numerical simulations of particle growth in a silicon-CVD fluidized bed reactor via a CFD-PBM coupled model[J]. Chemical Engineering Science, 2014, 111: 112-125. |
20 | Liu S S, Xiao W D. CFD-PBM coupled simulation of silicon CVD growth in a fluidized bed reactor: effect of silane pyrolysis kinetic models[J]. Chemical Engineering Science, 2015, 127: 84-94. |
21 | Li P L, Wang T F, Liu Y F, et al. CFD simulation of the hydrodynamic behavior in an internally circulating fluidized bed reactor for producing polysilicon granules[J]. Powder Technology, 2017, 311: 496-505. |
22 | Andrews M J, O'Rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402. |
23 | O'Rourke P J, Snider D M. An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets[J]. Chemical Engineering Science, 2010, 65(22): 6014-6028. |
24 | O'Rourke P J, Snider D M. A new blended acceleration model for the particle contact forces induced by an interstitial fluid in dense particle/fluid flows[J]. Powder Technology, 2014, 256: 39-51. |
25 | Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of Computational Physics, 2001, 170(2): 523-549. |
26 | 姜勇. 基于MP-PIC方法的流态化反应器快速模拟研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020. |
Jiang Y. Rapid simulation of fluidized reactors based on the MP-PIC method[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2020. | |
27 | Sutherland W. The viscosity of gases and molecular force[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1893, 36(223): 507-531. |
28 | Benyahia S, Syamlal M, O'Brien T J. Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe[J]. Powder Technology, 2005, 156(2/3): 62-72. |
29 | Fuller E N, Schettler P D, Giddings J C. New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial & Engineering Chemistry, 1966, 58(5): 18-27. |
30 | Snider D M, Clark S M, O'Rourke P J. Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers[J]. Chemical Engineering Science, 2011, 66(6): 1285-1295. |
31 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description[M]. USA: Academic Press, 1994. |
32 | Ranz W, Marshall W. Evaporation from droplets: part Ⅰ and Ⅱ[J]. Chem. Eng. Prog., 1952, 48: 141-173. |
33 | Dietiker J F, Li T W, Garg R, et al. Cartesian grid simulations of gas-solids flow systems with complex geometry[J]. Powder Technology, 2013, 235: 696-705. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[6] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[9] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[10] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[11] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[12] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[13] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[14] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[15] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||