化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4565-4575.DOI: 10.11949/0438-1157.20220778
季东(), 王健, 王可, 李婧玮, 孟文亮, 杨勇, 李贵贤, 王东亮, 周怀荣()
收稿日期:
2022-05-31
修回日期:
2022-07-05
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
周怀荣
作者简介:
季东(1978—),男,博士,教授,jidong@lut.edu.cn
基金资助:
Dong JI(), Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU()
Received:
2022-05-31
Revised:
2022-07-05
Online:
2022-10-05
Published:
2022-11-02
Contact:
Huairong ZHOU
摘要:
大量的化石燃料燃烧导致温室气体排放增加,全球气候变暖。世界各国以全球协约的方式减排CO2,我国也由此提出“碳达峰·碳中和”目标。CO2捕集以及转化制液体燃料和化学品是双碳目标下行之有效的碳减排措施之一,不仅可以实现CO2的资源化利用,同时也缓解了国家能源安全问题。本文以燃煤电厂烟气CO2捕集和CO2合成甲醇为研究对象,分析了基于四种不同CO2捕集技术的CO2耦合绿氢制甲醇工艺。对四种不同CO2捕集技术的CO2制甲醇工艺进行了严格的稳态建模和模拟,分析和比较了不同CO2捕集技术情景下的CO2制甲醇工艺的技术和经济性能。结果表明,MEA、PCS、DMC和GMS情景的单位甲醇能耗分别是7.81、5.48、5.91和4.66 GJ/ t CH3OH,GMS情景的单位能耗最低,其次是PCS情景,但随着更高效相变吸收剂的开发,PCS情景的单位甲醇产品的能耗将降低至2.29~2.58 GJ/t CH3OH。四种情景的总生产成本分别是4314、4204、4279和4367 CNY/ t CH3OH,PCS情景的成本最低,更具有经济优势。综合分析表明PCS情景的性能表现最好,为可用于燃煤电厂最佳的碳捕集技术,为CO2高效合成燃料化学品提供方向,缓解化石燃料短缺和环境污染问题。
中图分类号:
季东, 王健, 王可, 李婧玮, 孟文亮, 杨勇, 李贵贤, 王东亮, 周怀荣. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575.
Dong JI, Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies[J]. CIESC Journal, 2022, 73(10): 4565-4575.
参数 | 数值 |
---|---|
CO2/%(mol) | 14.6 |
N2/%(mol) | 77.9 |
O2/%(mol) | 3.3 |
H2O/%(mol) | 4.2 |
烟气流量/(kmol/h) | 40000 |
烟气进料温度/℃ | 42 |
烟气进料压力/bar | 1.09 |
表1 燃煤电厂烟气的工况参数
Table 1 The specifications of the flue gas
参数 | 数值 |
---|---|
CO2/%(mol) | 14.6 |
N2/%(mol) | 77.9 |
O2/%(mol) | 3.3 |
H2O/%(mol) | 4.2 |
烟气流量/(kmol/h) | 40000 |
烟气进料温度/℃ | 42 |
烟气进料压力/bar | 1.09 |
过程单元 | 关键参数 | 数值 |
---|---|---|
CO2捕集 | ||
MEA[ | 吸收温度 | 42℃ |
解吸温度 | 120℃ | |
MEA 消耗 | 465 t/h | |
CO2 捕集率 | 90% | |
PCS[ | 吸收温度 | 42℃ |
解吸温度 | 110℃ | |
贫相体积分数 | 41.2% | |
CO2 捕集率 | 90% | |
DMC[ | 吸收温度 | 30℃ |
吸收压力 | 3 MPa | |
闪蒸压力 | 5/1 MPa | |
CO2 捕集率 | 90% | |
GMS[ | CO2/N2选择性(一级膜) | 49 |
CO2渗透速率(一级膜) | 2000 GPU | |
CO2/N2选择性(二级膜) | 140 | |
CO2渗透速率(二级膜) | 700 GPU | |
渗透压力 | 0.6 MPa | |
CO2 捕集率 | 90% | |
CO2转化 | ||
MS[ | 反应温度 | 250℃ |
反应压力 | 5 MPa | |
MD[ | 进料温度 | 77℃ |
操作压力 | 0.1 MPa | |
塔板数 | 33 | |
回流比 | 2.3 | |
甲醇回收率 | 99.5% | |
甲醇质量分数 | 99.9% |
表2 不同二氧化碳捕集技术的CTM工艺建模和模拟过程的关键参数
Table 2 Key parameters for modeling and simulation of CTM process with four different CO2 capture technologies
过程单元 | 关键参数 | 数值 |
---|---|---|
CO2捕集 | ||
MEA[ | 吸收温度 | 42℃ |
解吸温度 | 120℃ | |
MEA 消耗 | 465 t/h | |
CO2 捕集率 | 90% | |
PCS[ | 吸收温度 | 42℃ |
解吸温度 | 110℃ | |
贫相体积分数 | 41.2% | |
CO2 捕集率 | 90% | |
DMC[ | 吸收温度 | 30℃ |
吸收压力 | 3 MPa | |
闪蒸压力 | 5/1 MPa | |
CO2 捕集率 | 90% | |
GMS[ | CO2/N2选择性(一级膜) | 49 |
CO2渗透速率(一级膜) | 2000 GPU | |
CO2/N2选择性(二级膜) | 140 | |
CO2渗透速率(二级膜) | 700 GPU | |
渗透压力 | 0.6 MPa | |
CO2 捕集率 | 90% | |
CO2转化 | ||
MS[ | 反应温度 | 250℃ |
反应压力 | 5 MPa | |
MD[ | 进料温度 | 77℃ |
操作压力 | 0.1 MPa | |
塔板数 | 33 | |
回流比 | 2.3 | |
甲醇回收率 | 99.5% | |
甲醇质量分数 | 99.9% |
反应 | k | E/(cal/mol) |
---|---|---|
(1) | 3.02×1014 | 9855.8 |
(2) | 1.33×1017 | 13249.0 |
(1)的可逆反应 | 5.52×1023 | 16518.0 |
(2)的可逆反应 | 6.63×1016 | 25656.0 |
表3 方程中的参数k和E
Table 3 The parameters k and E in the equations
反应 | k | E/(cal/mol) |
---|---|---|
(1) | 3.02×1014 | 9855.8 |
(2) | 1.33×1017 | 13249.0 |
(1)的可逆反应 | 5.52×1023 | 16518.0 |
(2)的可逆反应 | 6.63×1016 | 25656.0 |
反应 | A | B | C | D |
---|---|---|---|---|
(3) | 132.899 | -13446 | -22.4773 | 0 |
(4) | 231.465 | -12092 | -35.4819 | 0 |
(5) | 2.8898 | -3635.09 | 0 | 0 |
表4 平衡常数的各项参数
Table 4 The parameters of equilibrium constants
反应 | A | B | C | D |
---|---|---|---|---|
(3) | 132.899 | -13446 | -22.4773 | 0 |
(4) | 231.465 | -12092 | -35.4819 | 0 |
(5) | 2.8898 | -3635.09 | 0 | 0 |
CTM过程 | 天然气消耗/(t/h) | 电力消耗/MWh |
---|---|---|
CMEATM | 34.72 | 11.63 |
CPCSTM | 23.85 | 13.15 |
CDMCTM | 16.14 | 107.80 |
CGMSTM | 16.12 | 51.75 |
表5 CTM过程主要能量消耗
Table 5 Main energy consumption of CTM process
CTM过程 | 天然气消耗/(t/h) | 电力消耗/MWh |
---|---|---|
CMEATM | 34.72 | 11.63 |
CPCSTM | 23.85 | 13.15 |
CDMCTM | 16.14 | 107.80 |
CGMSTM | 16.12 | 51.75 |
单元 | 基准 | Sref | sf | f | |
---|---|---|---|---|---|
MEA[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 206.55 |
PCS[ | CO2产量 | 62.26 t/h | 0.67 | 0.65 | 87.14 |
DMC[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 244.45 |
GMS[ | CO2产量 | 423.36 t/h | 0.67 | 0.65 | 387.8 |
MS[ | 合成气进料量 | 10.81 kmol/s | 0.67 | 0.65 | 142.8 |
MD[ | 甲醇进料量 | 3.66 kg/s | 0.67 | 0.65 | 12.04 |
表6 主要单元设备投资数据汇总
Table 6 Summary of investment data for main equipment components
单元 | 基准 | Sref | sf | f | |
---|---|---|---|---|---|
MEA[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 206.55 |
PCS[ | CO2产量 | 62.26 t/h | 0.67 | 0.65 | 87.14 |
DMC[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 244.45 |
GMS[ | CO2产量 | 423.36 t/h | 0.67 | 0.65 | 387.8 |
MS[ | 合成气进料量 | 10.81 kmol/s | 0.67 | 0.65 | 142.8 |
MD[ | 甲醇进料量 | 3.66 kg/s | 0.67 | 0.65 | 12.04 |
过程单元 | 关键参数 | 数值 | 文献值 |
---|---|---|---|
CO2捕集 | |||
MEA[ | MEA补充/(kg/t(CO2)) | 1.52 | 1.50 |
MEA循环量/(t/h) | 463 | — | |
贫相CO2负载/(mol/mol) | 0.25 | 0.20 | |
再生能耗/(MJ/kg CO2) | 4.02 | 4.00 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
PCS[ | 贫相体积分数/% | 41.2 | 43.6 |
溶剂循环速率/(kg/h) | 4.52×106 | 4.50×106 | |
再生能耗/(MJ/kg CO2) | 2.42 | 2.40 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
DMC[ | 溶剂损失/(kg/h) | 953 | 946 |
电力/MW | 635 | 629 | |
DMC循环量/(t/h) | 976.5 | — | |
再生能耗/(MJ/kg CO2) | 2.7 | — | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
GMS[ | 总膜面积/(106 m2) | 0.72 | 0.70 |
一级膜渗透测气体流率/(mol/s) | 9475 | 9240 | |
二级膜渗透测气体流率/(mol/s) | 8750 | 8625 | |
再生能耗/(MJ/kg CO2) | 1.72 | 1.70 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
CO2转化 | |||
MS单元[ | 单位甲醇CO2消耗/(t/(t MeOH) | 1.44 | 1.46 |
单位甲醇H2消耗/(t/t MeOH) | 0.194 | 0.199 | |
反应器出口流率/(t/h) | 472.8 | 467.6 | |
反应器出口甲醇组成/% | 12.4 | 12.0 | |
MD单元[ | 精馏塔塔顶质量流率/(t/h) | 55.4 | 55.1 |
甲醇质量分数/% | 99.90 | 99.96 | |
甲醇产量/(t/h) | 161.4 | — |
表7 关键参数的模拟结果与文献的比较
Table 7 Comparison of the simulated and reported results of key parameters
过程单元 | 关键参数 | 数值 | 文献值 |
---|---|---|---|
CO2捕集 | |||
MEA[ | MEA补充/(kg/t(CO2)) | 1.52 | 1.50 |
MEA循环量/(t/h) | 463 | — | |
贫相CO2负载/(mol/mol) | 0.25 | 0.20 | |
再生能耗/(MJ/kg CO2) | 4.02 | 4.00 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
PCS[ | 贫相体积分数/% | 41.2 | 43.6 |
溶剂循环速率/(kg/h) | 4.52×106 | 4.50×106 | |
再生能耗/(MJ/kg CO2) | 2.42 | 2.40 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
DMC[ | 溶剂损失/(kg/h) | 953 | 946 |
电力/MW | 635 | 629 | |
DMC循环量/(t/h) | 976.5 | — | |
再生能耗/(MJ/kg CO2) | 2.7 | — | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
GMS[ | 总膜面积/(106 m2) | 0.72 | 0.70 |
一级膜渗透测气体流率/(mol/s) | 9475 | 9240 | |
二级膜渗透测气体流率/(mol/s) | 8750 | 8625 | |
再生能耗/(MJ/kg CO2) | 1.72 | 1.70 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
CO2转化 | |||
MS单元[ | 单位甲醇CO2消耗/(t/(t MeOH) | 1.44 | 1.46 |
单位甲醇H2消耗/(t/t MeOH) | 0.194 | 0.199 | |
反应器出口流率/(t/h) | 472.8 | 467.6 | |
反应器出口甲醇组成/% | 12.4 | 12.0 | |
MD单元[ | 精馏塔塔顶质量流率/(t/h) | 55.4 | 55.1 |
甲醇质量分数/% | 99.90 | 99.96 | |
甲醇产量/(t/h) | 161.4 | — |
1 | IEA. Global Energy Review: CO2 Emissions in 2021[R]. Paris: IEA, 2021. |
2 | Jung S H, Kim H, Kang Y, et al. Analysis of Korea's green technology policy and investment trends for the realization of carbon neutrality: focusing on CCUS technology[J]. Processes, 2022, 10(3): 501. |
3 | 黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869. |
Huang H, Yang S Y. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869. | |
4 | Papadopoulos A I, Tzirakis F, Tsivintzelis I, et al. Phase-change solvents and processes for postcombustion CO2 capture: a detailed review[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5088-5111. |
5 | 王涛, 刘飞, 方梦祥, 等. 两相吸收剂捕集二氧化碳技术研究进展[J]. 中国电机工程学报, 2021, 41(4): 1186-1196. |
Wang T, Liu F, Fang M X, et al. Research progress in biphasic solvent for CO2 capture technology[J]. Proceedings of the CSEE, 2021, 41(4): 1186-1196. | |
6 | Tang Z G, Li H W, Fei W Y, et al. Performance evaluation of a novel CO2 absorbent: dimethyl carbonate[J]. International Journal of Greenhouse Gas Control, 2016, 44: 140-151. |
7 | Lee S, Binns M, Kim J K. Automated process design and optimization of membrane-based CO2 capture for a coal-based power plant[J]. Journal of Membrane Science, 2018, 563: 820-834. |
8 | Kim S H, Kim J K, Yeo J G, et al. Comparative feasibility study of CO2 capture in hollowfiber membrane processes based on process models and heat exchanger analysis[J]. Chemical Engineering Research and Design, 2017, 117: 659-669. |
9 | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
10 | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
11 | Ravikumar D, Keoleian G, Miller S. The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production[J]. Applied Energy, 2020, 279: 115770. |
12 | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
Wang J J, Han Z, Chen S Y, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
13 | Lee B, Lee H, Lim D, et al. Renewable methanol synthesis from renewable H2 and captured CO2: how can power-to-liquid technology be economically feasible? [J]. Applied Energy, 2020, 279: 115827. |
14 | Li B H, Zhang N, Smith R. Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution[J]. Applied Energy, 2016, 161: 707-717. |
15 | Wang R J, Liu S S, Wang L D, et al. Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas[J]. Applied Energy, 2019, 242: 302-310. |
16 | Zhou W J, Zhu B, Chen D J, et al. Technoeconomic assessment of China's indirect coal liquefaction projects with different CO2 capture alternatives[J]. Energy, 2011, 36(11): 6559-6566. |
17 | Xu J Y, Wang Z, Qiao Z H, et al. Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure[J]. Journal of Membrane Science, 2019, 581: 195-213. |
18 | Pérez-Fortes M, Schöneberger J C, Boulamanti A, et al. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment[J]. Applied Energy, 2016, 161: 718-732. |
19 | Amirkhosrow M, Nemati Lay E. Simulation model evaluation of desorber column in CO2 capture process by MEA scrubbing: a rigorous rate-based model for kinetic model and mass transfer correlations analysis[J]. Fuel Processing Technology, 2020, 203: 106390. |
20 | Zhang W D, Jin X H, Tu W W, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
21 | Ren L X, Chang F L, Kang D Y, et al. Hybrid membrane process for post-combustion CO2 capture from coal-fired power plant[J]. Journal of Membrane Science, 2020, 603: 118001. |
22 | 孟文亮, 李贵贤, 周怀荣, 等. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
Meng W L, Li G X, Zhou H R, et al. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen[J]. CIESC Journal, 2022, 73(4): 1714-1723. | |
23 | An X, Zuo Y Z, Zhang Q, et al. Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88-94. |
24 | Kiss A A, Pragt J J, Vos H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269. |
25 | Lim H W, Park M J, Kang S H, et al. Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10448-10455. |
26 | Chen J J, Qian Y, Yang S Y. Conceptual design and techno-economic analysis of a coal to methanol and ethylene glycol cogeneration process with low carbon emission and high efficiency[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5229-5239. |
27 | Xiang D, Yang S Y, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240: 45-54. |
28 | Askmar J, Carbol J. Carbon dioxide capture using phase changing solvents — a comparison with state-of-the-art MEA technologies[D]. Gothenburg, Sweden: Chalmers University of Technology, 2017. |
29 | He C, Feng X. Evaluation indicators for energy-chemical systems with multi-feed and multi-product[J]. Energy, 2012, 43(1): 344-354. |
30 | Ma Y Q, Liao Y T, Su Y, et al. Comparative investigation of different CO2 capture technologies for coal to ethylene glycol process[J]. Processes, 2021, 9(2): 207. |
31 | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
32 | Zhang J F, Qiao Y, Wang W Z, et al. Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents[J]. Energy Procedia, 2013, 37: 1254-1261. |
33 | Chen Z B, Jing G H, Lv B H, et al. An efficient solid-liquid biphasic solvent for CO2 capture: crystalline powder product and low heat duty[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14493-14503. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[8] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[15] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||