化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1093-1101.DOI: 10.11949/0438-1157.20211168
收稿日期:
2021-08-16
修回日期:
2022-01-24
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
吴慧英
作者简介:
杨振(1997—),男,硕士研究生,基金资助:
Zhen YANG1(),Yuanpeng YAO1,2,Yun LI1,Huiying WU1()
Received:
2021-08-16
Revised:
2022-01-24
Online:
2022-03-15
Published:
2022-03-14
Contact:
Huiying WU
摘要:
以Tween20、Span20及两者复配物为表面活性剂,实验研究了其对水过冷池沸腾传热特性影响。基于实验结果与表面张力、接触角、临界胶束浓度等基础物性分析发现,单一表面活性剂对沸腾传热的影响由其添加种类、浓度及热通量共同决定。一方面,不同于饱和沸腾情形,过冷状态下Tween20能够有效降低沸腾起始点温度与壁面过热度,但其沸腾强化效果在高热通量下减弱;另一方面,Span20只在低浓度下表现出强化效果,其浓度增大将引起壁面过热度大幅攀升。此外,尽管Tween20与Span20都具有强化沸腾传热的潜力,但两者复配表面活性剂在实验研究浓度范围内均恶化了沸腾传热过程。研究结果可为传热强化复合工质过冷池沸腾传热特性分析提供基础依据,并为其配制提供指导。
中图分类号:
杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101.
Zhen YANG, Yuanpeng YAO, Yun LI, Huiying WU. Experimental study on effect of surfactants on subcooled pool boiling characteristics of pure water working medium[J]. CIESC Journal, 2022, 73(3): 1093-1101.
热通量/(W·cm-2) | Eq /% | ETw/% | Eh /% |
---|---|---|---|
34.4 | 5.93 | 0.107 | 5.98 |
180.9 | 3.13 | 0.188 | 3.35 |
表1 实验参数不确定度
Table 1 Uncertainties of experimental parameters
热通量/(W·cm-2) | Eq /% | ETw/% | Eh /% |
---|---|---|---|
34.4 | 5.93 | 0.107 | 5.98 |
180.9 | 3.13 | 0.188 | 3.35 |
图3 水饱和池沸腾曲线与关联式[18-19]及文献报道实验数据[20-22]的对比
Fig.3 Comparison of saturated pool boiling curves of water between correlations[18-19] and experimental data[20-22] reported in literatures
浓度/(ml·L-1) | ONB/℃ |
---|---|
0 | 111.9 |
0.05 | 110.6 |
0.5 | 108.4 |
1 | 108.2 |
表2 Tween20对ONB的影响
Table 2 Effects of Tween20 on ONB
浓度/(ml·L-1) | ONB/℃ |
---|---|
0 | 111.9 |
0.05 | 110.6 |
0.5 | 108.4 |
1 | 108.2 |
1 | 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108. |
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces[J]. CIESC Journal, 2016, 67(1): 97-108. | |
2 | 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301. |
Mou S, Zhao C Y, Xu Z G. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301. | |
3 | Cheng X, Yao Y P, Wu H Y. An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters[J]. International Journal of Heat and Mass Transfer, 2021, 168: 120843. |
4 | Liang G T, Mudawar I. Review of pool boiling enhancement with additives and nanofluids[J]. International Journal of Heat and Mass Transfer, 2018, 124: 423-453. |
5 | 黄玉媛. 精细化工配方常用原料手册[M]. 广州: 广东科技出版社, 1998. |
Huang Y Y. Manual of Common Raw Materials for Fine Chemical Formula[M]. Guangzhou: Guangdong Science & Technology Press, 1998. | |
6 | Mahamod W, Abdulah D K, Lim W H, et al. Emulsion properties of mixed Tween20-Span20 in non-aqueous system[J]. Pertanika Journal of Science & Technology, 2002, 10(2): 153-160. |
7 | Wu W T, Yang Y M, Maa J R. Enhancement of nucleate boiling heat transfer and depression of surface tension by surfactant additives[J]. Journal of Heat Transfer, 1995, 117(2): 526-529. |
8 | Ravikumar S V, Jha J M, Sarkar I, et al. Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol[J]. Applied Thermal Engineering, 2014, 64(1/2): 64-75. |
9 | Bhatt N H, Lily, Raj R, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature[J]. International Journal of Heat and Mass Transfer, 2017, 110: 330-347. |
10 | Ravikumar S V, Haldar K, Jha J M, et al. Heat transfer enhancement using air-atomized spray cooling with water-Al2O3 nanofluid[J]. International Journal of Thermal Sciences, 2015, 96: 85-93. |
11 | Dombek G, Nadolny Z, Marcinkowska A. Effects of nanoparticles materials on heat transfer in electro-insulating liquids[J]. Applied Sciences, 2018, 8(12): 2538. |
12 | Lin C Y, Wang J C, Chen T C. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration[J]. Applied Energy, 2011, 88(12): 4527-4533. |
13 | Shiau B J, Sabatini D A, Harwell J H. Properties of food grade (edible) surfactants affecting subsurface remediation of chlorinated solvents[J]. Environmental Science & Technology, 1995, 29(12): 2929-2935. |
14 | 尹博, 杨佐毅, 王玉洁, 等. 表面活性剂对苯胺和偶氮苯的增溶作用研究[J]. 环境科学与技术, 2016, 39(12): 46-50, 123. |
Yin B, Yang Z Y, Wang Y J, et al. Study on the surfactant’s solubilization to aniline and azobenzene[J]. Environmental Science & Technology, 2016, 39(12): 46-50, 123. | |
15 | Pey C M, Maestro A, Solé I, et al. Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 288(1/2/3): 144-150. |
16 | Kandlikar S G. Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer[J]. Applied Physics Letters, 2013, 102(5): 051611. |
17 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
18 | Rohsenow W M. A method of correlating heat transfer data for surface boiling of liquids[J]. Trans. ASME, 1952,74: 969-976. |
19 | Li Y Y, Chen Y J, Liu Z H. A uniform correlation for predicting pool boiling heat transfer on plane surface with surface characteristics effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 809-817. |
20 | Neto A R, Oliveira J L G, Passos J C. Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina, maghemite and CNTs[J]. Applied Thermal Engineering, 2017, 111: 1493-1506. |
21 | Mao L, Zhou W B, Hu X G, et al. Pool boiling performance and bubble dynamics on graphene oxide nanocoating surface[J]. International Journal of Thermal Sciences, 2020, 147: 106154. |
22 | Yang Y P, Ji X B, Xu J L. Pool boiling heat transfer on copper foam covers with water as working fluid[J]. International Journal of Thermal Sciences, 2010, 49(7): 1227-1237. |
23 | Li C, Wang Z K, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088. |
24 | Zhang J T, Manglik R M. Nucleate pool boiling of aqueous polymer solutions on a cylindrical heater[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 125(2/3): 185-196. |
25 | Hetsroni G, Mosyak A, Pogrebnyak E, et al. Bubble growth in saturated pool boiling in water and surfactant solution[J]. International Journal of Multiphase Flow, 2006, 32(2): 159-182. |
26 | Hetsroni G, Gurevich M, Mosyak A, et al. Effect of surfactant concentration on saturated flow boiling in vertical narrow annular channels[J]. International Journal of Multiphase Flow, 2007, 33(11): 1141-1152. |
27 | Hu Z C, Gu J Q, Song X N, et al. Pool boiling heat transfer of aqueous surfactant solutions[C]//2011 Fourth International Conference on Intelligent Computation Technology and Automation. Shenzhen, China, 2011: 841-844. |
28 | Gouda R K, Pathak M, Kaleem K M. A biosurfactant as prospective additive for pool boiling heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119292. |
29 | Cheng L X, Mewes D, Luke A. Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2744-2771. |
30 | Ahmmed K T, Syeda S R. Enhancement of nucleate pool boiling heat transfer with sodium oleate[J]. Journal of Chemical Engineering, 2017, 29(1): 44-48. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[6] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[7] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[8] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[9] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[10] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[11] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[12] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[13] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754. |
[14] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[15] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||