1 |
Lan W J, Jing S, Li S W, et al. Hydrodynamics and mass transfer in a countercurrent multistage microextraction system[J]. Industrial & Engineering Chemistry Research, 2016, 55(20): 6006-6017.
|
2 |
Zhou H, Jing S, Yu X, et al. Study of droplet breakage in a pulsed disc and doughnut column (Ⅰ): Experiments and correlations[J]. Chemical Engineering Science, 2019, 197: 172-183.
|
3 |
Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75.
|
4 |
Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions[J]. Lab on a Chip, 2011, 11(9): 1587-1592.
|
5 |
Jiang J Z, Zhu Y, Cui Z G, et al. Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant[J]. Angewandte Chemie (International Ed. in English), 2013, 52(47): 12373-12376.
|
6 |
Kim J H, Jeon T Y, Choi T M, et al. Droplet microfluidics for producing functional microparticles[J]. Langmuir, 2014, 30(6): 1473-1488.
|
7 |
Duncanson W J, Lin T N, Abate A R, et al. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release[J]. Lab on a Chip, 2012, 12(12): 2135-2145.
|
8 |
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nature Materials, 2013, 12(11): 991-1003.
|
9 |
Xu J H, Luo G S, Li S W, et al. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties[J]. Lab on a Chip, 2006, 6(1): 131-136.
|
10 |
Zhao C X, Middelberg A P J. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7): 1394-1411.
|
11 |
Xu K, Zhu P X, Huh C, et al. Microfluidic investigation of nanoparticles’ role in mobilizing trapped oil droplets in porous media[J]. Langmuir, 2015, 31(51): 13673-13679.
|
12 |
苏瑶瑶, 李平凡, 汪伟, 等. 微流控液滴模板法可控构建功能微颗粒材料[J]. 化工学报, 2021, 72(1): 42-60.
|
|
Su Y Y, Li P F, Wang W, et al. Controllable fabrication of functional microparticle materials from microfluidic droplet templates[J]. CIESC Journal, 2021, 72(1): 42-60.
|
13 |
孙俊杰, 郝婷婷, 马学虎, 等. 壁面润湿性对微通道内二氧化碳-水两相流流动及传质性能的影响[J]. 化工学报, 2015, 66(9): 3405-3412.
|
|
Sun J J, Hao T T, Ma X H, et al. Surface wettability effect on carbon dioxide-water two-phase flow and mass transfer in rectangular microchannel[J]. CIESC Journal, 2015, 66(9): 3405-3412.
|
14 |
Israelachvili J N. Intermolecular and Surface Forces[M]. 3rd ed. New York: Academic Press, 2011.
|
15 |
Zeng H B. Polymer Adhesion, Friction, and Lubrication[M]. Hoboken: John Wiley & Sons, Inc., 2013.
|
16 |
Svetovoy V B, Dević I, Snoeijer J H, et al. Effect of disjoining pressure on surface nanobubbles[J]. Langmuir, 2016, 32(43): 11188-11196.
|
17 |
Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie (International Ed. in English), 2016, 55(48): 15017-15021.
|
18 |
陆小华, 董依慧, 安蓉, 等. 复杂流体-固体界面相互作用热力学机制[J]. 化工学报, 2019, 70(10): 3677-3689.
|
|
Lu X H, Dong Y H, An R, et al. Thermodynamic mechanism of complex fluids-solids interfacial interaction[J]. CIESC Journal, 2019, 70(10): 3677-3689.
|
19 |
Shi C, Chan D Y C, Liu Q X, et al. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy[J]. The Journal of Physical Chemistry C, 2014, 118(43): 25000-25008.
|
20 |
Shi C, Cui X, Zhang X R, et al. Interaction between air bubbles and superhydrophobic surfaces in aqueous solutions[J]. Langmuir, 2015, 31(26): 7317-7327.
|
21 |
Shi C, Cui X, Xie L, et al. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces [J]. ACS Nano, 2014, 9: 95-104.
|
22 |
Xie L, Shi C, Wang J Y, et al. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope[J]. Langmuir, 2015, 31(8): 2438-2446.
|
23 |
陈安, 骆广生, 徐建鸿. 液滴间相互作用机制定量探究的研究进展[J]. 化工学报, 2021, 72(12): 5955-5964.
|
|
Chen A, Luo G S, Xu J H. Research progress on quantitative exploration of the interaction mechanism between droplets[J]. CIESC Journal, 2021, 72(12): 5955-5964.
|
24 |
Horn R G, Asadullah M, Connor J N. Thin film drainage: hydrodynamic and disjoining pressures determined from experimental measurements of the shape of a fluid drop approaching a solid wall[J]. Langmuir, 2006, 22(6): 2610-2619.
|
25 |
Connor J N, Horn R G. Extending the surface force apparatus capabilities by using white light interferometry in reflection[J]. Review of Scientific Instruments, 2003, 74(11): 4601-4606.
|
26 |
Pushkarova R A, Horn R G. Bubble-solid interactions in water and electrolyte solutions[J]. Langmuir, 2008, 24(16): 8726-8734.
|
27 |
Lockie H J, Manica R, Stevens G W, et al. Precision AFM measurements of dynamic interactions between deformable drops in aqueous surfactant and surfactant-free solutions[J]. Langmuir, 2011, 27(6): 2676-2685.
|
28 |
Jin H, Wang W, Chang H L, et al. Effects of salt-controlled self-assembly of triblock copolymers F68 on interaction forces between oil drops in aqueous solution[J]. Langmuir, 2017, 33(51): 14548-14555.
|
29 |
Mettu S, Berry J D, Dagastine R R. Charge and film drainage of colliding oil drops coated with the nonionic surfactant C12E5 [J]. Langmuir, 2017, 33(20): 4913-4923.
|
30 |
Israelachvili J, Min Y, Akbulut M, et al. Recent advances in the surface forces apparatus (SFA) technique[J]. Reports on Progress in Physics, 2010, 73(3): 036601.
|
31 |
Lan W J, Cai D Z, Hu X J, et al. Determination of dynamic interactions of droplets in continuous fluids using droplet probe[J]. Journal of Colloid and Interface Science, 2022, 605: 91-100.
|