1 |
Ganapathy H, Shooshtari A, Dessiatoun S, et al. Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor[J]. Applied Energy, 2014, 119: 43-56.
|
2 |
Peng B, Xu J, Zhu J, et al. Numerical and experimental studies on the flow multiplicity phenomenon for gas-solids two-phase flows in CFB risers[J]. Powder Technology, 2011, 214(2): 177-187.
|
3 |
Zhang J Z, Li W. Investigation of hydrodynamic and heat transfer characteristics of gas-liquid Taylor flow in vertical capillaries[J]. International Communications in Heat and Mass Transfer, 2016, 74: 1-10.
|
4 |
Gu H, Duits M H, Mugele F. Droplets formation and merging in two-phase flow microfluidics[J]. International Journal of Molecular Sciences, 2011, 12(4): 2572-2597.
|
5 |
Kobayashi I, Neves M A, Wada Y, et al. Large microchannel emulsification device for mass producing uniformly sized droplets on a liter per hour scale[J]. Green Processing and Synthesis, 2012, 1(4): 353-362.
|
6 |
Zhou C, Zhu P, Tian Y, et al. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers[J]. Lab on a Chip, 2017, 17(19): 3310-3317.
|
7 |
Dittrich P S, Manz A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 5(3): 210-218.
|
8 |
Bhise N S, Ribas J, Manoharan V, et al. Organ-on-a-chip platforms for studying drug delivery systems[J]. Journal of Controlled Release, 2014, 190: 82-93.
|
9 |
Ozcelikkale A, Moon H R, Linnes M, et al. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9(5): e1460.
|
10 |
赵述芳, 白琳, 付宇航, 等. 液滴流微反应器的基础研究及其应用[J]. 化工进展, 2015, 34(3): 593-607, 616.
|
|
Zhao S F, Bai L, Fu Y H, et al. Fundamental research and applications of droplet-based microreactor[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 593-607, 616.
|
11 |
付涛涛, 徐子懿, Tahir Muhammad Faran, 等. 微通道内液滴/气泡破裂动力学分析[J]. 化工学报, 2018, 69(11): 4566-4576.
|
|
Fu T T, Xu Z Y, Faran T, et al. Progress in breakup dynamics of droplets and bubbles in microchannels[J]. CIESC Journal, 2018, 69(11): 4566-4576.
|
12 |
Ushikubo F Y, Birribilli F S, Oliveira D R B, et al. Y- and T-junction microfluidic devices: effect of fluids and interface properties and operating conditions[J]. Microfluidics and Nanofluidics, 2014, 17(4): 711-720.
|
13 |
Qian D Y, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science, 2006, 61(23): 7609-7625.
|
14 |
Xu J H, Li S W, Tan J, et al. Preparation of highly monodisperse droplet in a T-junction microfluidic device[J]. AIChE Journal, 2006, 52(9): 3005-3010.
|
15 |
Li X, Popel A S, Karniadakis G E. Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study[J]. Physical Biology, 2012, 9(2): 026010.
|
16 |
Li Y L, Zhang F L, Sunden B, et al. Laminar thermal performance of microchannel heat sinks with constructal vertical Y-shaped bifurcation plates[J]. Applied Thermal Engineering, 2014, 73(1): 185-195.
|
17 |
Chang M H, Chen F L, Fang N S. Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel[J]. Journal of Power Sources, 2006, 159(2): 810-816.
|
18 |
Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12): 121512.
|
19 |
丁奕文, 刘向东, 张程宾. 十字型微通道中乳液流变行为的数值模拟[J]. 化工进展, 2017, 36(S1): 43-50.
|
|
Ding Y W, Liu X D, Zhang C B. Numerical simulation of emulsion droplet formation in cross-junction microfluidic channels[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 43-50.
|
20 |
张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504-511.
|
|
Zhang Q D, Fu T T, Zhu C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504-511.
|
21 |
Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446.
|
22 |
Zhao Y C, Chen G W, Yuan Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel[J]. AIChE Journal, 2006, 52(12): 4052-4060.
|
23 |
党敏辉, 任明月, 陈光文. 微反应器内入口结构对Taylor气泡形成过程的影响[J]. 化工学报, 2014, 65(3): 805-812.
|
|
Dang M H, Ren M Y, Chen G W. Effect of microchannel inlet configuration on Taylor bubble formation in microreactors[J]. CIESC Journal, 2014, 65(3): 805-812.
|
24 |
Yu Z, Hemminger O, Fan L S. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels[J]. Chemical Engineering Science, 2007, 62(24): 7172-7183.
|
25 |
Kashid M, Kiwi-Minsker L. Quantitative prediction of flow patterns in liquid-liquid flow in micro-capillaries[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 972-978.
|
26 |
Ngo I L, Woo Joo S, Byon C. Effects of junction angle and viscosity ratio on droplet formation in microfluidic cross-junction[J]. Journal of Fluids Engineering, 2016, 138(5): 051202.
|
27 |
Lee W, Walker L M, Anna S L. Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics[J]. Macromolecular Materials and Engineering, 2011, 296(3/4): 203-213.
|
28 |
Sarkar P S, Singh K K, Shenoy K T, et al. Liquid–liquid two-phase flow patterns in a serpentine microchannel[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 5056-5066.
|
29 |
Wu Z, Cao Z, Sundén B. Liquid-liquid flow patterns and slug hydrodynamics in square microchannels of cross-shaped junctions[J]. Chemical Engineering Science, 2017, 174: 56-66.
|
30 |
Cao Z, Wu Z, Sundén B. Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels[J]. Chemical Engineering Journal, 2018, 344: 604-615.
|
31 |
Guillot P, Colin A. Stability of parallel flows in a microchannel after a T junction[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(6 pt 2): 066301.
|
32 |
Zhao Y C, Chen G W, Yuan Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels[J]. AIChE Journal, 2007, 53(12): 3042-3053.
|
33 |
雷丽, 李慧玲, 赵玉婷, 等. 凹穴型微通道液-液两相流动特性[J]. 高校化学工程学报, 2020, 34(6): 1360-1367.
|
|
Lei L, Li H L, Zhao Y T, et al. Characteristics of liquid-liquid two-phase flow in microchannels with reentrant cavities[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(6): 1360-1367.
|
34 |
Yin Y R, Zhu C Y, Fu T T, et al. Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel[J]. Chemical Engineering Science, 2019, 201: 264-273.
|
35 |
Huang H X, Wu H Y, Zhang C. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels[J]. Journal of Micromechanics and Microengineering, 2018, 28(5): 055003.
|
36 |
de Menech M, Garstecki P, Jousse F, et al. Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595: 141-161.
|
37 |
Gupta A, Kumar R. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction[J]. Microfluidics and Nanofluidics, 2010, 8(6): 799-812.
|