化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3636-3646.DOI: 10.11949/0438-1157.20220358
收稿日期:
2022-03-10
修回日期:
2022-06-17
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
牛永安
作者简介:
张鑫(1983—),女,博士,副教授,zhangxin0406@126.com
基金资助:
Xin ZHANG1(), Rui XU1, Xinyu LU1, Yong'an NIU2()
Received:
2022-03-10
Revised:
2022-06-17
Online:
2022-08-05
Published:
2022-09-06
Contact:
Yong'an NIU
摘要:
调整禁带宽度和抑制光生电子-空穴对复合是提高Bi2O3半导体光催化性能的重要途径。首先采用溶液合成和热处理法成功制备了SiO2@Bi2O3核壳微球,研究了投料比、热处理温度等因素来调控核壳组成和包覆效果。为提高光催化活性,采用Cl掺杂改变SiO2@Bi2O3核壳微球壳层的结构、形貌与组成,通过XRD、SEM、TEM等方法确定了微球壳层为BiOCl-Bi24O31Cl10复合物。调整摩尔比、氨水和NaCl用量等参数,优化SiO2@BiOCl-Bi24O31Cl10核壳微球的均匀包覆效果,大幅提高了对罗丹明B(RhB)的光催化降解效率。在此基础上,阐述了SiO2@Bi2O3核壳微球的形成机理和SiO2@BiOCl-Bi24O31Cl10核壳微球的光催化降解机理。
中图分类号:
张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646.
Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres[J]. CIESC Journal, 2022, 73(8): 3636-3646.
样品 | Bi(NO3)3·5H2O/g | SiO2/g | 投料比x |
---|---|---|---|
SB-0.8 | 0.3032 | 0.0500 | 0.8 |
SB-1.0 | 0.4043 | 0.0500 | 1.0 |
SB-1.5 | 0.6065 | 0.0500 | 1.5 |
SB-2.0 | 0.8086 | 0.0500 | 2.0 |
表1 SiO2@Bi2O3样品前体的反应参数
Table 1 Reaction parameters of some SiO2@Bi2O3 sample precursors
样品 | Bi(NO3)3·5H2O/g | SiO2/g | 投料比x |
---|---|---|---|
SB-0.8 | 0.3032 | 0.0500 | 0.8 |
SB-1.0 | 0.4043 | 0.0500 | 1.0 |
SB-1.5 | 0.6065 | 0.0500 | 1.5 |
SB-2.0 | 0.8086 | 0.0500 | 2.0 |
样品 | 氨水/ml | Bi(NO3)3∙5H2O/g | NaCl/g | SiO2∶Bi(NO3)3∙5H2O∶NaCl(摩尔比) |
---|---|---|---|---|
SBC-1 (SBC-1-0.5) | 0.5 | 0.4043 | 0.0488 | 1∶1∶1 |
SBC-2 | 0.5 | 0.4043 | 0.0975 | 1∶1∶2 |
SBC-3 | 0.5 | 0.4043 | 0.1462 | 1∶1∶3 |
SBC-4 | 0.5 | 0.4043 | 0.1950 | 1∶1∶4 |
SBC-1-1 | 1.0 | 0.4043 | 0.0488 | 1∶1∶1 |
SBC-1-2 | 2.0 | 0.4043 | 0.0488 | 1∶1∶1 |
SBC-1-3 | 3.0 | 0.4043 | 0.0488 | 1∶1∶1 |
表2 SiO2@BiOCl-Bi24O31Cl10样品前体的具体投料参数
Table 2 Specific feeding parameters of SiO2@BiOCl-Bi24O31Cl10 sample precursors
样品 | 氨水/ml | Bi(NO3)3∙5H2O/g | NaCl/g | SiO2∶Bi(NO3)3∙5H2O∶NaCl(摩尔比) |
---|---|---|---|---|
SBC-1 (SBC-1-0.5) | 0.5 | 0.4043 | 0.0488 | 1∶1∶1 |
SBC-2 | 0.5 | 0.4043 | 0.0975 | 1∶1∶2 |
SBC-3 | 0.5 | 0.4043 | 0.1462 | 1∶1∶3 |
SBC-4 | 0.5 | 0.4043 | 0.1950 | 1∶1∶4 |
SBC-1-1 | 1.0 | 0.4043 | 0.0488 | 1∶1∶1 |
SBC-1-2 | 2.0 | 0.4043 | 0.0488 | 1∶1∶1 |
SBC-1-3 | 3.0 | 0.4043 | 0.0488 | 1∶1∶1 |
图8 改变氨水添加量(z=0.5,1.0,2.0,3.0)和摩尔比(y=1,2,3,4)得到的SiO2@BiOCl-Bi24O31Cl10(450)的紫外可见吸收光谱图
Fig.8 UV absorption spectra of as-obtained SiO2@BiOCl-Bi24O31Cl10(450) with altered ammonia content (z=0.5,1.0,2.0,3.0) and mole ratio (y=1,2,3,4)
图10 不同热处理温度的SiO2@Bi2O3,不同投料摩尔比的SiO2@BiOCl-Bi24O31Cl10(450)-y和不同氨水添加量的SiO2@BiOCl-Bi24O31Cl10(450)-1-z对RhB的光催化降解曲线和表观速率常数
Fig.10 The photocatalytic degradation curves and apparent rate constants of RhB obtained by SiO2@Bi2O3 with different heat treatment temperatures, SiO2@BiOCl-Bi24O31Cl10(450)-y with different feed mole ratios and SiO2@BiOCl-Bi24O31Cl10(450)-1-z with different ammonia additions
1 | Xie X, Wang S B, Zhang Y J, et al. Facile construction for new core-shell Z-scheme photocatalyst GO/AgI/Bi2O3 with enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2021, 581: 148-158. |
2 | 孙丹阳, 翟婷婷, 黎汉生, 等. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71(S2): 1-11. |
Sun D Y, Zhai T T, Li H S, et al. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71(S2) :1-11. | |
3 | Moniz S J A, Shevlin S A, Martin D J, et al. Visible-light driven heterojunction photocatalysts for water splitting—a critical review[J]. Energy & Environmental Science, 2015, 8(3): 731-759. |
4 | 赫荣安, 曹少文, 余家国. 铋系光催化剂的形貌调控与表面改性研究进展[J]. 物理化学学报, 2016, 32(12): 2841-2870. |
He R A, Cao S W, Yu J G. Recent advances in morphology control and surface modification of Bi-based photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(12): 2841-2870. | |
5 | Liu S Q, Tu Y Q, Dai G P. The effects of citrate ion on morphology and photocatalytic activity of flower-like Bi2O2CO3 [J]. Ceramics International, 2014, 40(1): 2343-2348. |
6 | Yang L L, Han Q F, Zhu J W, et al. Synthesis of egg-tart shaped Bi2O2CO3 hierarchical nanostructures from single precursor and its photocatalytic performance[J]. Materials Letters, 2015, 138: 235-237. |
7 | Hu T X, Li H P, Du N, et al. Iron-doped bismuth tungstate with an excellent photocatalytic performance[J]. ChemCatChem, 2018, 10(14): 3040-3048. |
8 | Chen J B, Iyemperumal S K, Fenton T, et al. Synergy between defects, photoexcited electrons, and supported single atom catalysts for CO2 reduction[J]. ACS Catalysis, 2018, 8(11): 10464-10478. |
9 | Du C, Yan B, Lin Z Y, et al. Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn2S4 for photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2020, 8(1): 207-217. |
10 | Gülce H, Eskizeybek V, Haspulat B, et al. Preparation of a new polyaniline/CdO nanocomposite and investigation of its photocatalytic activity: comparative study under UV light and natural sunlight irradiation[J]. Industrial & Engineering Chemistry Research, 2013, 52(32): 10924-10934. |
11 | Li H J, Zhou Y, Tu W G, et al. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance[J]. Advanced Functional Materials, 2015, 25(7): 998-1013. |
12 | Liu H J, Du C W, Li M, et al. One-pot hydrothermal synthesis of SnO2/BiOBr heterojunction photocatalysts for the efficient degradation of organic pollutants under visible light[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28686-28694. |
13 | 陈颖, 韩星月, 梁宏宝, 等. 微波蚀刻法制备RGO-BiOCl/Bi2WO6异质结型催化剂及其催化性能[J]. 化工学报, 2018, 69(4): 1758-1764. |
Chen Y, Han X Y, Liang H B, et al. Synthesis and photocatalytic activity of RGO-BiOCl/Bi2WO6 heterojunction photocatalyst by microwave etching method[J]. CIESC Journal, 2018, 69(4): 1758-1764. | |
14 | 李燕, 蹇亮, 茅沁怡, 等. 构建Bi2O2CO3/g-C3N4异质结光催化完全氧化苯甲醇至苯甲醛[J]. 化工学报, 2021, 72(8): 4166-4176. |
Li Y, Jian L, Mao Q Y, et al. Construction of Bi2O2CO3/g-C3N4 heterojunction photocatalytic complete oxidation of benzyl alcohol to benzaldehyde[J]. CIESC Journal, 2021, 72(8): 4166-4176. | |
15 | Chen M J, Li Y, Wang Z Y, et al. Controllable synthesis of core-shell Bi@Amorphous Bi2O3 nanospheres with tunable optical and photocatalytic activity for NO removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(37): 10251-10258. |
16 | Hu J L, Li H M, Huang C J, et al. Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(Ⅱ) clusters modification[J]. Applied Catalysis B: Environmental, 2013, 142/143: 598-603. |
17 | Lim G D, Yoo J H, Ji M, et al. Visible light driven photocatalytic degradation enhanced by α/β phase heterojunctions on electrospun Bi2O3 nanofibers[J]. Journal of Alloys and Compounds, 2019, 806: 1060-1067. |
18 | 何志桥, 陈锦萍, 童丽丽, 等. BiOCl/g-C3N4异质结催化剂可见光催化还原CO2 [J]. 化工学报, 2016, 67(11): 4634-4642. |
He Z Q, Chen J P, Tong L L, et al. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light[J]. CIESC Journal, 2016, 67(11): 4634-4642. | |
19 | Chen Y Y, Zhou Y, Dong Q M, et al. One-step in situ synthesis of BiOCl/(BiO)2CO3 composite photocatalysts with exposed high-energy {001} facets[J]. CrystEngComm, 2018, 20(48): 7838-7850. |
20 | He W H, Wang Y W, Fan C M, et al. Enhanced charge separation and increased oxygen vacancies of h-BN/OV-BiOCl for improved visible-light photocatalytic performance[J]. RSC Advances, 2019, 9(25): 14286-14295. |
21 | Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69. |
22 | Back M, Trave E, Zaccariello G, et al. Bi2SiO5@g-SiO2 upconverting nanoparticles: a bismuth-driven core-shell self-assembly mechanism[J]. Nanoscale, 2019, 11(2): 675-687. |
23 | Chen C C, Yang C T, Chung W H, et al. Synthesis and characterization of Bi4Si3O12, Bi2SiO5, and Bi12SiO20 by controlled hydrothermal method and their photocatalytic activity[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 157-167. |
24 | Liu X F, Lai Y K, Huang J Y, et al. Hierarchical SiO2@Bi2O3 core/shell electrospun fibers for infrared stealth camouflage[J]. Journal of Materials Chemistry C, 2015, 3(2): 345-351. |
25 | Cao S Y, Chen C S, Liu T G, et al. Synthesis of reduced graphene o x i d e / α - B i 2 M o 3 O 12 @ β - B i 2 O 3 heterojunctions by organic electrolytes assisted UV-excited method[J]. Chemical Engineering Journal, 2014, 257: 309-316. |
26 | Selvamani T, Anandan S, Granone L, et al. Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications[J]. Materials Chemistry Frontiers, 2018, 2(9): 1664-1673. |
27 | Yuan X L, Zhang Y, Cao M H, et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation[J]. Nano Letters, 2019, 19(7): 4752-4759. |
28 | Han M D, Sun T, Tan P Y, et al. m-BiVO4@γ-Bi2O3 core-shell p-n heterogeneous nanostructure for enhanced visible-light photocatalytic performance[J]. RSC Advances, 2013, 3(47): 24964. |
29 | Li B X, Shao L Z, Wang R S, et al. Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for the selective oxidation of aromatic alcohols[J]. Journal of Materials Chemistry A, 2018, 6(15): 6344-6355. |
30 | Wang L, Shang J, Hao W C, et al. A dye-sensitized visible light photocatalyst-Bi24O31Cl10 [J]. Scientific Reports, 2014, 4: 7384. |
31 | 张瑞. SnO晶体的形貌控制合成及其用于构建TiO2/SnO异质结提升光催化性能研究[D]. 北京: 北京科技大学, 2020. |
Zhang R. Morphology controlled synthesis of SnO and TiO2/SnO heterojunctions with enhanced photocatalytic properties[D]. Beijing: University of Science and Technology Beijing, 2020. | |
32 | 陶莎莎. 掺杂氯氧化铋(BiOCl)的制备及光催化降解染料性能增强机制研究[D]. 西安: 西安理工大学, 2020. |
Tao S S. Preparation of doped bismuth oxychloride and enhancement mechanism of photocatalytic degradation of dyes[D]. Xi'an: Xi'an University of Technology, 2020. | |
33 | Fenelon E, Bui D P, Tran H H, et al. Straightforward synthesis of SnO2/Bi2S3/BiOCl-Bi24O31Cl10 composites for drastically enhancing rhodamine B photocatalytic degradation under visible light[J]. ACS Omega, 2020, 5(32): 20438-20449. |
34 | Liu Z S, Niu J N, Feng P Z, et al. One-pot synthesis of Bi24O31Br10/Bi4V2O11 heterostructures and their photocatalytic properties[J]. RSC Advances, 2014, 4(82): 43399-43405. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[8] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[9] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[12] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||