化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4097-4108.DOI: 10.11949/0438-1157.20230825
于晓宇1(), 安瑛1(), 左夏华2, 李凯1, 张锋华1, 焦志伟1, 杨卫民1
收稿日期:
2023-08-14
修回日期:
2023-09-19
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
安瑛
作者简介:
于晓宇(1998—),男,硕士研究生,yuxiaoyu9808@163.com
基金资助:
Xiaoyu YU1(), Ying AN1(), Xiahua ZUO2, Kai LI1, Fenghua ZHANG1, Zhiwei JIAO1, Weimin YANG1
Received:
2023-08-14
Revised:
2023-09-19
Online:
2023-10-25
Published:
2023-12-22
Contact:
Ying AN
摘要:
主动强化技术是提升集热器效率的有效手段。本研究利用管式有源强化集热装置,系统研究了旋流作用下辐照强度、纳米流体浓度、转子转速、转子数量及排布方式、转子颜色及类型等对水基炭黑纳米流体集热性能的影响。结果表明,光热转换效率随辐照强度的增加而显著增加;炭黑-胶原蛋白的加入使介质同时间段的全程光热转换效率提升了56.6%~216.7%,质量分数为0.005%的水基炭黑纳米流体光热转换效率最高的同时能效比也较高;转子转速在150 r/min时,全程光热转换效率最终提升了30.32%,继续提升转子转速不会增加纳米流体的集热效率;转子均匀排布时,将转子数量减少一半几乎不会影响集热效率;转子颜色及类型的搭配对不同浓度的纳米流体集热效率具有协同作用,黑色低流阻转子在纯水及高浓度纳米流体中集热效果较好,白色两叶片转子在中低浓度的纳米流体中集热效果较好。本研究明确了转子旋流下影响纳米流体集热性能的规律,为太阳能光热利用提供了新的思路。
中图分类号:
于晓宇, 安瑛, 左夏华, 李凯, 张锋华, 焦志伟, 杨卫民. 旋流作用下水基炭黑纳米流体集热性能研究[J]. 化工学报, 2023, 74(10): 4097-4108.
Xiaoyu YU, Ying AN, Xiahua ZUO, Kai LI, Fenghua ZHANG, Zhiwei JIAO, Weimin YANG. Study on the heat collection performance of water-based carbon black nanofluid under swirling flow[J]. CIESC Journal, 2023, 74(10): 4097-4108.
参数 | 误差 |
---|---|
辐照强度 | ±1% |
温度 | ±0.5% |
纳米流体质量 | ±0.1% |
管内集热面积 | ±0.25% |
纳米流体比热容 | ±0.1% |
表1 实验参数的误差范围
Table 1 Error range of experimental parameters
参数 | 误差 |
---|---|
辐照强度 | ±1% |
温度 | ±0.5% |
纳米流体质量 | ±0.1% |
管内集热面积 | ±0.25% |
纳米流体比热容 | ±0.1% |
转速/(r/min) | 空转(不添加纳米流体) 功率消耗/W | 负荷运转(添加纳米流体)功率消耗/W |
---|---|---|
0 | 0 | 0 |
100 | 0.70 | 0.75 |
150 | 0.80 | 0.85 |
200 | 0.85 | 0.90 |
250 | 0.95 | 1.00 |
表2 不同转子转速功率消耗
Table 2 Power consumption at different rotor speeds
转速/(r/min) | 空转(不添加纳米流体) 功率消耗/W | 负荷运转(添加纳米流体)功率消耗/W |
---|---|---|
0 | 0 | 0 |
100 | 0.70 | 0.75 |
150 | 0.80 | 0.85 |
200 | 0.85 | 0.90 |
250 | 0.95 | 1.00 |
图3 不同浓度水基炭黑纳米流体在190~1100 nm波长范围内的吸光度
Fig.3 The absorbance of water-based carbon black nanofluids with different concentrations in the wavelength range of 190—1100 nm
图12 不同转子数量及排布方式下的温升及全程光热转换效率
Fig.12 Temperature rise and full range photothermal conversion efficiency under different number and arrangement of rotors
图15 不同类型转子在不同浓度纳米流体中的全程光热转换效率
Fig.15 The full range photothermal conversion efficiency of different types of rotors in different concentrations of nanofluids
1 | Saha S K, Ranjan H, Emani M S, et al. Active and passive techniques: their applications[M]// Introduction to Enhanced Heat Transfer. Cham: Springer, 2020: 17-72. |
2 | Baffigi F, Bartoli C. Heat transfer enhancement using ultrasonic waves in presence of liquid: a basic research for cooling electronic[J]. Applied Mechanics and Materials, 2014, 464: 163-170. |
3 | Liang H X, Su R H, Huang W M, et al. A novel spectral beam splitting photovoltaic/thermal hybrid system based on semi-transparent solar cell with serrated groove structure for co-generation of electricity and high-grade thermal energy[J]. Energy Conversion and Management, 2022, 252: 115049. |
4 | Yenigun O, Barisik M. Local heat transfer control using liquid dielectrophoresis at graphene/water interfaces[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120801. |
5 | 臧徐忠, 石尔, 傅俊萍, 等. 磁场调控磁性纳米流体流动和传热研究进展[J]. 化工进展, 2019, 38(12): 5410-5419. |
Zang X Z, Shi E, Fu J P, et al. A review of magnetic field effects on flow and heat transfer in magnetic nanofluids[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5410-5419. | |
6 | Bezaatpour M, Goharkhah M. Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow[J]. Applied Thermal Engineering, 2020, 167(C): 114801. |
7 | Chen H B, Zhao R, Wang C C, et al. Preparation and characterization of microencapsulated phase change materials for solar heat collection[J]. Energies, 2022, 15(15): 5354. |
8 | Kong W B, Lei Y, Jiang Y Y, et al. Preparation and thermal performance of polyurethane/PEG as novel form-stable phase change materials for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(2): 1011-1019. |
9 | 郭广东, 邓松圣, 华卫星. 基于Fluent的动态旋流器流场计算机模拟仿真[J]. 计算机系统应用, 2013, 22(9): 199-202. |
Guo G D, Deng S S, Hua W X. Computer simulation of flow field of dynamic cyclone based on Fluent[J]. Computer Systems and Applications, 2013, 22(9): 199-202. | |
10 | 王小川, 贺国, 郭朝有, 等. 旋流强度对气/雾两相传热传质的影响[J]. 上海交通大学学报, 2013, 47(11): 1767-1772. |
Wang X C, He G, Guo C Y, et al. Effect of swirl intensity on heat and mass transfer in gas-droplets two-phase flow[J]. Journal of Shanghai Jiaotong University, 2013, 47(11): 1767-1772. | |
11 | 胡建军, 郭萌, 张广秋, 等. 利用旋流效应强化平板型太阳能空气集热器性能[J]. 农业工程学报, 2020, 36(6): 188-195. |
Hu J J, Guo M, Zhang G Q, et al. Improving the heat collection performance of baffle type solar air collectors using swirl flow effect[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 188-195. | |
12 | Fan X J, He C X, Gan L, et al. Experimental study of swirling flow characteristics in a semi cylinder vortex cooling configuration[J]. Experimental Thermal and Fluid Science, 2020, 113: 110036. |
13 | 张岱凌, 丁玉梅, 左夏华, 等. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
Zhang D L, Ding Y M, Zuo X H, et al. Photothermal properties of waste toner nanofluids[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. | |
14 | 仇延钊, 吴红艳, 杭烨超, 等. 少层石墨烯纳米流体的球磨法制备及其导热性能[J/OL]. 华中师范大学学报(自然科学版), . |
Qiu Y Z, Wu H Y, Hang Y C, et al. Preparation and thermal conductivity of low-layer graphene nanofluids by ball milling[J/OL]. Journal of Central China Normal University (Natural Science Edition), . | |
15 | 孙恩博, 陈今茂, 熊春华, 等. 纳米流体稳定性及其导热性能研究[J]. 热能动力工程, 2021, 36(5): 61-65. |
Sun E B, Chen J M, Xiong C H, et al. Research on the stability and thermal conductivity of nanofluids[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(5): 61-65. | |
16 | 于丽, 卞永宁, 刘杨, 等. 低浓度水基多壁碳纳米管纳米流体的流变特性[J]. 材料导报, 2020, 34(22): 22010-22014, 22019. |
Yu L, Bian Y N, Liu Y, et al. Rheological characteristics of low concentrated MWCNT/water nanofluids[J]. Materials Reports, 2020, 34(22): 22010-22014, 22019. | |
17 | 陈红兵, 李思琦, 王聪聪, 等. 添加TiO2纳米颗粒和分散剂的相变流体黏度实验研究[J]. 功能材料, 2019, 50(12): 12103-12107. |
Chen H B, Li S Q, Wang C C, et al. Experimental study on viscosity of PCM slurry by adding TiO2 nanoparticles and dispersant[J]. Journal of Functional Materials, 2019, 50(12): 12103-12107. | |
18 | 欧阳鑫望, 吴张永, 莫子勇, 等. 水基纳米TiN流体黏度及流变特性的研究[J]. 材料导报, 2015, 29(8): 83-86. |
Ouyang X W, Wu Z Y, Mo Z Y, et al. Study on viscosity and rheological properties of water-based nano TiN fluids[J]. Materials Review, 2015, 29(8): 83-86. | |
19 | 张正国, 燕志鹏, 方晓明, 等. 纳米技术在强化传热中应用的研究进展[J]. 化工进展, 2011, 30(1): 34-39. |
Zhang Z G, Yan Z P, Fang X M, et al. Research development of applications of nanotechnology in heat transfer enhancement[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 34-39. | |
20 | 陈梅洁. Au 纳米流体的制备及其光热转换特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
Chen M J. Preparation of Au nanofluids and their photothermal conversion characteristics[D]. Harbin: Harbin Institute of Technology, 2016. | |
21 | 陈梅洁, 唐天琪, 刘子玉, 等. 等离激元Ag纳米流体光热转换特性[J]. 中国科学院大学学报, 2018, 35(2): 222-226. |
Chen M J, Tang T Q, Liu Z Y, et al. Investigating on photothermal conversion properties of plasmonic Ag nanofluids[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(2): 222-226. | |
22 | 李凯, 魏鹤琳, 左夏华, 等. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验研究[J]. 化工进展, DOI: 10.16085/j.issn.1000-6613.2023-0561 . |
Li K, Wei H L, Zuo X H, et al. Experimental study on preparation and stability of water-based carbon black-collagen nanofluids[J]. Chemical Industry and Engineering Progress, DOI: 10.16085/j.issn.1000-6613.2023-0561 . | |
23 | Zuo X H, Yang W M, Song L J, et al. Experimental investigation on photothermal conversion properties of collagen solution-based carbon black nanofluid[J]. SSRN Electronic Journal, 2022, 38: 102371. |
24 | 周玲. 油基纳米流体的光热转换性能研究[D]. 广州: 华南理工大学, 2016. |
Zhou L. Study on photothermal conversion performance of oil-based nanofluids[D]. Guangzhou: South China University of Technology, 2016. | |
25 | 王德兵. 磁性光热纳米流体集热工质的制备及性能研究[D]. 上海: 上海第二工业大学, 2020. |
Wang D B. Preparation and properties of magnetic photothermal nanofluid heat collector[D]. Shanghai: Shanghai Second Polytechnic University, 2020. | |
26 | 王旭. 液体吸附层对固/液界面热阻影响的数值与理论研究[D]. 上海: 上海交通大学, 2016. |
Wang X. Numerical and theoretical study on the effect of liquid adsorption layer on the thermal resistance of solid/liquid interface[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
27 | 何立臣, 关昌峰, 何长江, 等. 同比例大小径转子组合的强化传热实验[J]. 化工进展, 2014, 33(11): 2873-2877. |
He L C, Guan C F, He C J, et al. Experimental study on heat transfer enhancement of assembled rotors of large and small diameters of same ratio[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2873-2877. | |
28 | 何长江, 杨斯博, 张震, 等. 组合转子强化传热及阻垢装置稳定性分析[J]. 化工进展, 2014, 33(8): 1970-1973, 1978. |
He C J, Yang S B, Zhang Z, et al. Stability analysis on heat transfer enhancement and anti-fouling device called rotor-assembled strands[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 1970-1973, 1978. | |
29 | 蒋晨, 丁玉梅, 张震, 等. 内置组合转子换热管综合传热性能的数值模拟研究[J]. 机械设计与制造, 2013(12): 164-167. |
Jiang C, Ding Y M, Zhang Z, et al. Numerical simulation research of the comprehensive heat transfer performance of tubes with rotor assembly inserts[J]. Machinery Design & Manufacture, 2013(12): 164-167. | |
30 | 黎昊为, 左夏华, 张岱凌, 等. 内置转子太阳能集热管流动与传热特性的数值模拟研究[J]. 北京化工大学学报(自然科学版), 2023, 50(2): 89-96. |
Li H W, Zuo X H, Zhang D L, et al. Numerical simulation of the boiling heat transfer performance of a solar collector tube with inserted rotors[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2023, 50(2): 89-96. | |
31 | 贾雨川. 内置组合转子管式光生物反应器光照特性研究[D]. 北京: 北京化工大学, 2018. |
Jia Y C. Research on illumination characteristics of tubular photobioreactor with built-in composite rotor[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
32 | 王晗, 杨卫民, 何立臣, 等. 单元组合转子管式太阳能动态集热器实验研究[J]. 现代化工, 2018, 38(2): 177-180. |
Wang H, Yang W M, He L C, et al. Experimental research on tubular solar dynamic heat collector with unit combined rotor[J]. Modern Chemical Industry, 2018, 38(2): 177-180. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||