化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4267-4276.DOI: 10.11949/0438-1157.20230894
彭明1(), 夏强峰2, 蒋理想2, 陈黎1(), 陶文铨1
收稿日期:
2023-08-29
修回日期:
2023-10-25
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
陈黎
作者简介:
彭明(1991—),男,博士研究生,pengming@stu.xjtu.edu.cn
基金资助:
Ming PENG1(), Qiangfeng XIA2, Lixiang JIANG2, Li CHEN1(), Wenquan TAO1
Received:
2023-08-29
Revised:
2023-10-25
Online:
2023-10-25
Published:
2023-12-22
Contact:
Li CHEN
摘要:
风冷燃料电池性能较差仍然是限制其商业化应用的关键问题。采用数值模拟研究了阴极氧气过量系数以及氢/空布置方式对风冷燃料单电池性能的影响。结果表明,阴极过量系数过低时,风冷燃料电池无法满足散热需求,提高过量系数有利于风冷燃料电池热管理,提升膜电极中膜态水含量和电池性能,为了保证风冷燃料电池运行安全,需尽量维持风冷燃料电池运行在中高过量系数。与氢/空顺流布置相比,氢/空逆流布置策略受阳极入口干氢气影响膜电极呈现局部脱水状态,导致性能略微降低。
中图分类号:
彭明, 夏强峰, 蒋理想, 陈黎, 陶文铨. 阴极过量系数与流场布置对风冷燃料电池性能影响的数值模拟[J]. 化工学报, 2023, 74(10): 4267-4276.
Ming PENG, Qiangfeng XIA, Lixiang JIANG, Li CHEN, Wenquan TAO. Numerical simulation on the effect of cathode stoichiometric ratio and flow field arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2023, 74(10): 4267-4276.
几何结构 | 描述 | 数值/mm |
---|---|---|
阴极流道 | 宽度, WcGC | 1.2 |
深度, dcGC | 1.4 | |
阳极流道 | 宽度, WaGC | 0.9 |
深度, daGC | 0.6 | |
扩散层 | 厚度, δGDL | 0.25 |
微孔层 | 厚度, δMPL | 0.03 |
催化层 | 厚度, δCL | 0.03 |
质子交换膜 | 厚度, δMEM | 0.025 |
阴极肋 | 宽度, WcBP | 1.2 |
阳极肋 | 宽度, WaBP | 1.8 |
极板 | 长度, L | 108 |
宽度, W | 48.6 |
表1 风冷燃料电池单电池几何结构参数
Table 1 Geometric structural parameters of air-cooled single PEM fuel cell
几何结构 | 描述 | 数值/mm |
---|---|---|
阴极流道 | 宽度, WcGC | 1.2 |
深度, dcGC | 1.4 | |
阳极流道 | 宽度, WaGC | 0.9 |
深度, daGC | 0.6 | |
扩散层 | 厚度, δGDL | 0.25 |
微孔层 | 厚度, δMPL | 0.03 |
催化层 | 厚度, δCL | 0.03 |
质子交换膜 | 厚度, δMEM | 0.025 |
阴极肋 | 宽度, WcBP | 1.2 |
阳极肋 | 宽度, WaBP | 1.8 |
极板 | 长度, L | 108 |
宽度, W | 48.6 |
1 | Boukoberine M N, Zhou Z B, Benbouzid M. A critical review on unmanned aerial vehicles power supply and energy management: solutions, strategies, and prospects[J]. Applied Energy, 2019, 255: 113823. |
2 | Wen C Y, Lin Y S, Lu C H. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management[J]. Journal of Power Sources, 2009, 189(2): 1100-1105. |
3 | Min C H, Gao X M, Li F, et al. Thermal performance analyses of pulsating heat pipe for application in proton exchange member fuel cell[J]. Energy Conversion and Management, 2022, 259: 115566. |
4 | Sasmito A P, Birgersson E, Mujumdar A S. Numerical investigation of liquid water cooling for a proton exchange membrane fuel cell stack[J]. Heat Transfer Engineering, 2011, 32(2): 151-167. |
5 | Bargal M H S, Abdelkareem M A A, Tao Q, et al. Liquid cooling techniques in proton exchange membrane fuel cell stacks: a detailed survey[J]. Alexandria Engineering Journal, 2020, 59(2): 635-655. |
6 | Faghri A, Guo Z. Challenges and opportunities of thermal management issues related to fuel cell technology and modeling[J]. International Journal of Heat and Mass Transfer, 2005, 48(19/20): 3891-3920. |
7 | Chen Q, Zhang G B, Zhang X Z, et al. Thermal management of polymer electrolyte membrane fuel cells: a review of cooling methods, material properties, and durability[J]. Applied Energy, 2021, 286: 116496. |
8 | Yuan W W, Ou K, Kim Y B. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization[J]. Applied Thermal Engineering, 2020, 167: 114715. |
9 | Al-Zeyoudi H, Sasmito A P, Shamim T. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: case study of United Arab Emirates[J]. Energy Conversion and Management, 2015, 105: 798-809. |
10 | Dhathathreyan K S, Rajalakshmi N, Jayakumar K, et al. Forced air-breathing PEMFC stacks[J]. International Journal of Electrochemistry, 2012, 2012: 1-7. |
11 | De las Heras A, Vivas F J, Segura F, et al. Air-cooled fuel cells: keys to design and build the oxidant/cooling system[J]. Renewable Energy, 2018, 125: 1-20. |
12 | Zhao C, Xing S, Liu W, et al. Air and H2 feed systems optimization for open-cathode proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11940-11951. |
13 | 朱星光, 贾秋红, 陈唐龙, 等. 质子交换膜燃料电池阴极风扇系统实验研究[J]. 中国电机工程学报, 2013, 33(11): 47-53, 9. |
Zhu X G, Jia Q H, Chen T L, et al. Experimental study on characteristics of cathode fan systems of proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2013, 33(11): 47-53, 9. | |
14 | Pløger L J, Fallah R, Al Shakhshir S, et al. Improving the performance of an air-cooled fuel cell stack by a turbulence inducing grid[J]. ECS Transactions, 2018, 86(13): 77-87. |
15 | Zhao C, Xing S, Liu W, et al. Performance and thermal optimization of different length-width ratio for air-cooled open-cathode fuel cell[J]. Renewable Energy, 2021, 178: 1250-1260. |
16 | 魏琳, 郭剑, 廖梓豪, 等. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231. |
Wei L, Guo J, Liao Z H, et al. Influence of air flow rate on the performance of air-cooled hydrogen fuel cell stack[J]. CIESC Journal, 2022, 73(7): 3222-3231. | |
17 | Wilberforce T, El Hassan Z, Ogungbemi E, et al. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 236-260. |
18 | Li X G, Sabir I. Review of bipolar plates in PEM fuel cells: flow-field designs[J]. International Journal of Hydrogen Energy, 2005, 30(4): 359-371. |
19 | 赵强, 郭航, 叶芳, 等. 质子交换膜燃料电池流场板研究进展[J]. 化工学报, 2020, 71(5): 1943-1963. |
Zhao Q, Guo H, Ye F, et al. State of the art of flow field plates of proton exchange membrane fuel cells[J]. CIESC Journal, 2020, 71(5): 1943-1963. | |
20 | Zhang G B, Wu L Z, Tongsh C, et al. Structure design for ultrahigh power density proton exchange membrane fuel cell[J]. Small Methods, 2023, 7(3): 2201537. |
21 | 潘伟童. 质子交换膜燃料电池放大效应及流动均布与水管理过程研究[D]. 上海: 华东理工大学, 2022. |
Pan W T. Study on scale-up effects and flow distribution and water management processes of proton exchange membrane fuel cells[D].Shanghai: East China University of Science and Technology, 2022. | |
22 | Min C H, He J, Wang K, et al. A comprehensive analysis of secondary flow effects on the performance of PEMFCs with modified serpentine flow fields[J]. Energy Conversion and Management, 2019, 180: 1217-1224. |
23 | Geng Q T, Han Y R, Li B Z, et al. Optimal and modeling study of air-cooled proton exchange membrane fuel cell with various length-width ratio and numbers[J]. International Communications in Heat and Mass Transfer, 2023, 142: 106668. |
24 | Atyabi S A, Afshari E, Shakarami N. Three-dimensional multiphase modeling of the performance of an open-cathode PEM fuel cell with additional cooling channels[J]. Energy, 2023, 263: 125507. |
25 | Peng M, Chen L, Zhang R Y, et al. Improvement of thermal and water management of air-cooled polymer electrolyte membrane fuel cells by adding porous media into the cathode gas channel[J]. Electrochimica Acta, 2022, 412: 140154. |
26 | Zhang G B, Qu Z G, Wang Y. Full-scale three-dimensional simulation of air-cooled proton exchange membrane fuel cell stack: temperature spatial variation and comprehensive validation[J]. Energy Conversion and Management, 2022, 270: 116211. |
27 | Mu Y T, He P, Ding J, et al. Modeling of the operation conditions on the gas purging performance of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11788-11802. |
28 | 彭明, 夏强峰, 蒋理想, 等. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637. |
Peng M, Xia Q F, Jiang L X, et al. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2022, 73(10): 4625-4637. | |
29 | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. | |
30 | Yu X X, Chang H W, Zhao J J, et al. Effects of anode flow channel on performance of air-cooled proton exchange membrane fuel cell[J]. Energy Reports, 2022, 8: 4443-4452. |
31 | Hu M, Zhao R, Pan R, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell ( Ⅱ ) : Parameter sensitivity analysis[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18589-18603. |
32 | Shahsavari S, Desouza A, Bahrami M, et al. Thermal analysis of air-cooled PEM fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18261-18271. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||