化工学报 ›› 2023, Vol. 74 ›› Issue (12): 4956-4967.DOI: 10.11949/0438-1157.20231150
王旭辉1(), 丁雪兴1(
), 力宁2, 张志敏1, 司佳鑫2
收稿日期:
2023-11-08
修回日期:
2023-12-20
出版日期:
2023-12-25
发布日期:
2024-02-19
通讯作者:
丁雪兴
作者简介:
王旭辉(1998—),男,硕士研究生,15769550801@163.com
基金资助:
Xuhui WANG1(), Xuexing DING1(
), Ning LI2, Zhimin ZHANG1, Jiaxin SI2
Received:
2023-11-08
Revised:
2023-12-20
Online:
2023-12-25
Published:
2024-02-19
Contact:
Xuexing DING
摘要:
针对浮环密封运行过程中高频浮动导致的密封端面磨损进而造成密封泄漏量增大的问题,建立基于分形理论的浮环密封端面分形磨损预估模型,采用ABAQUS中的UMESHMOTION子程序和ALE自适应网格技术对浮环密封端面磨损过程进行仿真模拟,通过修正的Archard磨损理论计算接触区域的磨损深度,开展浮环端面磨损的内在规律研究,并通过试验验证了有限元模型的准确性。进一步分析了浮环端面表面形貌及工况参数对磨损深度的影响,以期为浮环端面密封的设计及磨损防护提供指导。研究结果表明:浮环端面磨损深度随着分形维数D的增加而减小,但随着特征尺度G的增加而增大,当D
中图分类号:
王旭辉, 丁雪兴, 力宁, 张志敏, 司佳鑫. 浮环密封端面分形磨损有限元模拟及试验验证[J]. 化工学报, 2023, 74(12): 4956-4967.
Xuhui WANG, Xuexing DING, Ning LI, Zhimin ZHANG, Jiaxin SI. Finite element analysis and experimental verification of fractal wear on floating ring seal end faces[J]. CIESC Journal, 2023, 74(12): 4956-4967.
样件参数 | 数值 |
---|---|
M234AO密度ρ1/(g/cm3) | 1.8 |
GH4169密度ρ2/(g/cm3) | 8.24 |
M234AO硬度(HR10/1470) | 80~125 |
GH4169硬度(HR10/1470) | 363 |
M234AO弹性模量E1/GPa | 20.5 |
GH4169弹性模量E2/GPa | 199.9 |
M234AO泊松比ν1 | 0.2 |
GH4169泊松比ν2 | 0.3 |
表1 样件参数
Table 1 Sample parameters
样件参数 | 数值 |
---|---|
M234AO密度ρ1/(g/cm3) | 1.8 |
GH4169密度ρ2/(g/cm3) | 8.24 |
M234AO硬度(HR10/1470) | 80~125 |
GH4169硬度(HR10/1470) | 363 |
M234AO弹性模量E1/GPa | 20.5 |
GH4169弹性模量E2/GPa | 199.9 |
M234AO泊松比ν1 | 0.2 |
GH4169泊松比ν2 | 0.3 |
试验 组号 | 试块质量/g | 磨损量/mg | 粗糙度/μm | 分形维数D | 特征尺度 G/m |
---|---|---|---|---|---|
No.1 | 1.6333 | 0.15 | 0.108 | 1.7559 | 1.1733×10-8 |
No.2 | 1.6701 | 0.16 | 0.098 | 1.7898 | 2.2982×10-8 |
No.3 | 2.0105 | 0.23 | 0.327 | 1.7344 | 5.3443×10-8 |
表2 M234AO石墨试验记录及磨损前分形参数计算
Table 2 M234AO graphite experiment record and fractal parameter calculation before wear
试验 组号 | 试块质量/g | 磨损量/mg | 粗糙度/μm | 分形维数D | 特征尺度 G/m |
---|---|---|---|---|---|
No.1 | 1.6333 | 0.15 | 0.108 | 1.7559 | 1.1733×10-8 |
No.2 | 1.6701 | 0.16 | 0.098 | 1.7898 | 2.2982×10-8 |
No.3 | 2.0105 | 0.23 | 0.327 | 1.7344 | 5.3443×10-8 |
1 | 刘占生, 夏鹏, 张广辉, 等. 浮环密封运动机理及对轴系稳定性的影响[J]. 振动与冲击, 2016, 35(9): 110-116. |
Liu Z S, Xia P, Zhang G H, et al. Floating ring seals movement mechanism and its influence on stability of a rotor system[J]. Journal of Vibration and Shock, 2016, 35(9): 110-116. | |
2 | Xia P, Chen H, Liu Z S, et al. Analysis of whirling motion for the dynamic system of floating ring seal and rotor[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233(8): 1221-1235. |
3 | Xia P, Zhang G H, Zhao J M, et al. Investigations on rotordynamic characteristics of a floating ring seal considering structural elasticity[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, North Carolina, USA: ASME, 2017. |
4 | 马润梅, 赵祥, 李双喜, 等. 高速气体环瓣式浮环密封泄漏特性的试验研究[J]. 风机技术, 2020, 62(6): 75-81. |
Ma R M, Zhao X, Li S X, et al. Experimental study on leakage characteristics of high speed gas split floating ring seal[J]. Chinese Journal of Turbomachinery, 2020, 62(6): 75-81. | |
5 | Tokunaga Y, Inoue H, Hiromatsu J, et al. Rotordynamic characteristics of floating ring seals in rocket turbopumps[J]. International Journal of Fluid Machinery and Systems, 2016, 9(3): 194-204. |
6 | 力宁, 江平, 翁泽文, 等. 航空发动机浮环密封上浮性能试验研究[J]. 润滑与密封, 2020, 45(11): 143-148. |
Li N, Jiang P, Weng Z W, et al. Experimental study on floating performance of floating ring seals used in aero engine[J]. Lubrication Engineering, 2020, 45(11): 143-148. | |
7 | 马润梅, 赵祥, 李双喜, 等. 动压式环瓣浮环密封特性及摩擦磨损研究[J]. 推进技术, 2022, 43(8): 318-327. |
Ma R M, Zhao X, Li S X, et al. Seal characteristics and friction and wear of dynamic pressure split floating ring[J]. Journal of Propulsion Technology, 2022, 43(8): 318-327. | |
8 | Yue T Y, Abdel Wahab M. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International, 2017, 107: 274-282. |
9 | Bose K K, Ramkumar P. Finite element method based sliding wear prediction of steel-on-steel contacts using extrapolation techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233(10): 1446-1463. |
10 | 李玲, 康乐, 阮晓光, 等. 不同加载条件下柱面/平面微动磨损有限元分析[J]. 机械科学与技术, 2018, 37(12): 1854-1861. |
Li L, Kang L, Ruan X G, et al. Finite element analysis of cylinder-flat fretting wear under different loading conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1854-1861. | |
11 | 刘乐强, 李欣, 杨建伟, 等. 圆柱-平面微动磨损接触状态有限元分析[J]. 机电工程, 2023, 40(6): 896-902. |
Liu L Q, Li X, Yang J W, et al. Finite element analysis of fretting contact state of cylindrical-plane fretting wear[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(6): 896-902. | |
12 | 于司泰, 兰惠清, 蔡建斌, 等. 航空渐开线花键微动磨损的仿真模拟研究[J]. 表面技术, 2022, 51(4): 149-156. |
Yu S T, Lan H Q, Cai J B, et al. Simulation study on fretting wear of aviation involute spline[J]. Surface Technology, 2022, 51(4): 149-156. | |
13 | 陈壮, 董庆兵, 罗振涛, 等. 花键微动磨损和损伤累积的耦合机制及寿命预测[J]. 机械工程学报, 2023, 59(3): 133-143. |
Chen Z, Dong Q B, Luo Z T, et al. Coupling mechanism of fretting wear and damage accumulation of spline couplings and service life prediction[J]. Journal of Mechanical Engineering, 2023, 59(3): 133-143. | |
14 | 彭文, 孙佳楠, 李旭东, 等. 板带热轧过程工作辊磨损预测研究[J]. 塑性工程学报, 2023, 30(5): 214-225. |
Peng W, Sun J N, Li X D, et al. Study on prediction of work roll wear during hot strip rolling[J]. Journal of Plasticity Engineering, 2023, 30(5): 214-225. | |
15 | Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology, 1991, 113(1): 1-11. |
16 | Jiang S Y, Zheng Y J, Zhu H A. A contact stiffness model of machined plane joint based on fractal theory[J]. Journal of Tribology, 2010, 132(1): 011401. |
17 | Pereira K, Yue T, Abdel Wahab M. Multiscale analysis of the effect of roughness on fretting wear[J]. Tribology International, 2017, 110: 222-231. |
18 | 孙见君, 顾伯勤, 魏龙. 基于分形理论的接触式机械密封泄漏模型[J]. 化工学报, 2006, 57(7): 1626-1631. |
Sun J J, Gu B Q, Wei L. Leakage model of contacting mechanical seal based on fractal geometry theory[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1626-1631. | |
19 | 孙见君, 顾伯勤, 魏龙, 等. 接触式机械密封寿命预测方法[J]. 化工学报, 2008, 59(12): 3095-3100. |
Sun J J, Gu B Q, Wei L, et al. Predicting seal life for contact mechanical seals[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(12): 3095-3100. | |
20 | 魏龙, 顾伯勤, 冯飞, 等. 粗糙表面接触模型的研究进展[J]. 润滑与密封, 2009, 34(7): 112-117. |
Wei L, Gu B Q, Feng F, et al. Progress of study on contact models of rough surfaces[J]. Lubrication Engineering, 2009, 34(7): 112-117. | |
21 | 王颜辉, 张学良, 温淑花, 等. 机械结合面法向接触刚度分形理论模型[J]. 机械强度, 2020, 42(3): 648-653. |
Wang Y H, Zhang X L, Wen S H, et al. Fractal theoretical model of normal contact stiffness of mechanical joint interfaces[J]. Journal of Mechanical Strength, 2020, 42(3): 648-653. | |
22 | 王颜辉, 张学良, 温淑花, 等. 考虑摩擦因素的结合面加/卸载分形理论模型[J]. 太原理工大学学报, 2021, 52(4): 654-661. |
Wang Y H, Zhang X L, Wen S H, et al. Fractal theory model of the joint interface during loading and unloading considering friction factors[J]. Journal of Taiyuan University of Technology, 2021, 52(4): 654-661. | |
23 | 王颜辉, 张学良, 温淑花, 等. 考虑硬度变化的结合面法向接触刚度分形模型[J]. 润滑与密封, 2021, 46(8): 41-48. |
Wang Y H, Zhang X L, Wen S H, et al. Fractal model of normal contact stiffness of the joint interfaces with considering hardness changes[J]. Lubrication Engineering, 2021, 46(8): 41-48. | |
24 | Wang H, Cui J W, Ma Y R, et al. Fractal characterization of nano anisotropic rough surface[C]//Proceedings of SPIE 12059, Tenth International Symposium on Precision Mechanical Measurements. Bellingham: SPIE, 2021: 308-318. |
25 | Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, 136(2): 313-327. |
26 | 杨小成, 丁雪兴, 陈金林. 考虑弹塑性变形阶段的干气密封接触模型[J]. 摩擦学学报, 2022, 42(6): 1237-1245. |
Yang X C, Ding X X, Chen J L. Contact model of dry gas seal considering elastic-plastic deformation stage[J]. Tribology, 2022, 42(6): 1237-1245. | |
27 | Arunachalam A P S, Idapalapati S. Material removal analysis for compliant polishing tool using adaptive meshing technique and Archard wear model[J]. Wear, 2019, 418/419: 140-150. |
28 | Liu Y F, Liskiewicz T W, Beake B D. Dynamic changes of mechanical properties induced by friction in the Archard wear model[J]. Wear, 2019, 428/429: 366-375. |
29 | Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. |
30 | Mohaghegh K, Pérez M A, García-Aznar J M. Accelerating numerical simulations of strain-adaptive bone remodeling predictions[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 273: 255-272. |
31 | 张志敏, 丁雪兴, 张兰霞, 等. 浮环密封端面分形磨损预估模型及数值分析[J]. 化工学报, 2022, 73(12): 5526-5536. |
Zhang Z M, Ding X X, Zhang L X, et al. Fractal wear prediction model and numerical analysis of floating ring seal face[J]. CIESC Journal, 2022, 73(12): 5526-5536. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 791
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||