化工学报 ›› 2023, Vol. 74 ›› Issue (2): 571-584.DOI: 10.11949/0438-1157.20221106
程伟江1(), 汪何琦1, 高翔1(), 李娜2, 马赛男3()
收稿日期:
2022-08-03
修回日期:
2022-10-30
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
高翔,马赛男
作者简介:
程伟江(1999—),男,硕士研究生,weijiangcheng@zju.edu.cn
基金资助:
Weijiang CHENG1(), Heqi WANG1, Xiang GAO1(), Na LI2, Sainan MA3()
Received:
2022-08-03
Revised:
2022-10-30
Online:
2023-02-05
Published:
2023-03-21
Contact:
Xiang GAO, Sainan MA
摘要:
锂离子电池是能源储存和利用的一项关键技术,能量密度已成为现代电池发展中的一个关键指标。硅基负极由于其较高的理论比容量,得到广泛关注,但硅基材料存在严重的体积膨胀问题。功能性添加剂对电池性能有明显的改善效果,是电解液体系不可缺少的部分,具有“用量小,见效快”的特点,通过成膜添加剂形成稳定的固态电解质界面(SEI)膜进而稳定电极电解液界面,改善硅基负极电池性能。本文总结了近年来硅基负极电解液成膜添加剂的研究进展,对成膜添加剂按照官能团或元素进行分类论述,并对多组分成膜添加剂的协同作用进行了简要阐述。最后,针对目前硅基负极电解液添加剂的研究现状进行了总结,并展望了未来的研究方向。
中图分类号:
程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584.
Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries[J]. CIESC Journal, 2023, 74(2): 571-584.
1 | Lee J K, Oh C, Kim N, et al. Rational design of silicon-based composites for high-energy storage devices[J]. Journal of Materials Chemistry A, 2016, 4(15): 5366-5384. |
2 | Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. |
3 | Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264. |
4 | Goriparti S, Miele E, de Angelis F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 257: 421-443. |
5 | Kim N, Chae S, Ma J, et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes[J]. Nature Communications, 2017, 8: 812. |
6 | Xie X H, Tian S Y, Guo W T, et al. In situ polymerization of aniline to prepare porous micro-nanostructure anode of graphene wrapping silicon and polyaniline for lithium ion batteries[J]. Ionics, 2022, 28(5): 2203-2211. |
7 | Wang F, Li P, Li W, et al. Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery[J]. ACS Nano, 2022, 16(5): 7689-7700. |
8 | Tang F Q, Tan Y, Jiang T T, et al. Phosphorus-doped silicon nanoparticles as high performance LIB negative electrode[J]. Journal of Materials Science, 2022, 57(4): 2803-2812. |
9 | Zhao M Y, Yang S B, Dong W. Low temperature aluminothermic reduction of natural sepiolite to high-performance Si nanofibers for Li-ion batteries[J]. Frontiers in Chemistry, 2022, 10: 932650. |
10 | Wang S E, Park J S, Kim M J, et al. One-pot spray pyrolysis for core-shell structured Sn@SiOC anode nanocomposites that yield stable cycling in lithium-ion batteries[J]. Applied Surface Science, 2022, 589: 152952. |
11 | Zhang X, Weng J Z, Ye C X, et al. Strategies for controlling or releasing the influence due to the volume expansion of silicon inside Si-C composite anode for high-performance lithium-ion batteries[J]. Materials, 2022, 15(12): 4264. |
12 | Yan Z, Jiang J, Zhang Y, et al. Scalable and low-cost synthesis of porous silicon nanoparticles as high-performance lithium-ion battery anode[J]. Materials Today Nano, 2022, 18: 100175. |
13 | Kim J, Kwon J, Kim M J, et al. A strategic approach to use upcycled Si nanomaterials for stable operation of lithium-ion batteries[J]. Nanomaterials, 2021, 11(12): 3248. |
14 | Du A M, Li H, Chen X W, et al. Recent research progress of silicon-based anode materials for lithium-ion batteries[J]. ChemistrySelect, 2022, 7(19): e202201269. |
15 | Kim K H, Shon J, Jeong H, et al. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method[J]. Journal of Power Sources, 2020, 459: 228066. |
16 | Ha Y, Schulze M C, Frisco S, et al. Li2O-based cathode additives enabling prelithiation of Si anodes[J]. Applied Sciences, 2021, 11(24): 12027. |
17 | Lin S, Wang F F, Hong R Y. Polyacrylic acid and β-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 613: 857-865. |
18 | Kim J M, Cho Y, Guccini V, et al. TEMPO-oxidized cellulose nanofibers as versatile additives for highly stable silicon anode in lithium-ion batteries[J]. Electrochimica Acta, 2021, 369: 137708. |
19 | Jankowski P, Li Z Y, Zhao-Karger Z, et al. Development of magnesium borate electrolytes: explaining the success of Mg[B(hfip)4]2 salt[J]. Energy Storage Materials, 2022, 45: 1133-1143. |
20 | Zhang C Z, Wang F, Han J, et al. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries[J]. Small Structures, 2021, 2(6): 2100009. |
21 | Hopkins E J, Frisco S, Pekarek R T, et al. Examining CO2 as an additive for solid electrolyte interphase formation on silicon anodes[J]. Journal of The Electrochemical Society, 2021, 168(3): 030534. |
22 | Li C, Zhu W C, Lao B G, et al. Lithium difluorophosphate as an effective additive for improving the initial coulombic efficiency of a silicon anode[J]. ChemElectroChem, 2020, 7(18): 3743-3751. |
23 | Lee S J, Han J G, Lee Y, et al. A bi-functional lithium difluoro(oxalato)borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures[J]. Electrochimica Acta, 2014, 137: 1-8. |
24 | Lv L Z, Wang Y, Huang W B, et al. Effect of lithium salt type on silicon anode for lithium-ion batteries[J]. Electrochimica Acta, 2022, 413: 140159. |
25 | Pan R J, Cui Z H, Yi M, et al. Ethylene carbonate-free electrolytes for stable, safer high-nickel lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(19): 2103806. |
26 | Li Y, Xu G J, Yao Y F, et al. Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive[J]. Journal of Solid State Electrochemistry, 2013, 17(5): 1393-1399. |
27 | Salah M, Pathirana T, de Eulate E A, et al. Effect of vinylene carbonate electrolyte additive and battery cycling protocol on the electrochemical and cyclability performance of silicon thin-film anodes[J]. Journal of Energy Storage, 2022, 46: 103868. |
28 | Hu F R, Zhang M Y, Qi W B, et al. Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives[J]. Chinese Physics B, 2021, 30(6): 068202. |
29 | Nölle R, Schmiegel J P, Winter M, et al. Tailoring electrolyte additives with synergistic functional moieties for silicon negative electrode-based lithium ion batteries: a case study on lactic acid O-carboxyanhydride[J]. Chemistry of Materials, 2020, 32(1): 173-185. |
30 | Han M T, Zheng D, Song P, et al. Theoretical study on fluoroethylene carbonate as an additive for the electrolyte of lithium ion batteries[J]. Chemical Physics Letters, 2021, 771: 138538. |
31 | Schroder K, Alvarado J, Yersak T A, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chemistry of Materials, 2015, 27(16): 5531-5542. |
32 | Chen X L, Li X L, Mei D H, et al. Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode[J]. ChemSusChem, 2014, 7(2): 549-554. |
33 | Johnson N M, Yang Z Z, Liu Q, et al. Enabling non-carbonate electrolytes for silicon anode batteries using fluoroethylene carbonate[J]. Journal of The Electrochemical Society, 2022, 169(4): 040527. |
34 | Zhao R, Wang S W, Liu D Q, et al. Effect of fluoroethylene carbonate on solid electrolyte interphase formation of the SiO/C anode observed by in situ atomic force microscopy[J]. ACS Applied Energy Materials, 2021, 4 (1): 492-499. |
35 | Hu Z L, Zhao L B, Jiang T, et al. Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes[J]. Advanced Functional Materials, 2019, 29(45): 1906548. |
36 | Huang L B, Li G, Lu Z Y, et al. Trans-difluoroethylene carbonate as an electrolyte additive for microsized SiO x @C anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24916-24924. |
37 | Han G B, Lee J N, Choi J W, et al. Tris(pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries[J]. Electrochimica Acta, 2011, 56(24): 8997-9003. |
38 | Xu N B, Sun Y O, Shi J W, et al. Fluorinated cyclic siloxane additives for high energy density Li-ion batteries with high nickel cathodes and silicon-carbon anodes[J]. Journal of Power Sources, 2021, 511: 230437. |
39 | Korepp C, Kern W, Lanzer E A, et al. Isocyanate compounds as electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2007, 174(2): 387-393. |
40 | Nölle R, Achazi A J, Kaghazchi P, et al. Pentafluorophenyl isocyanate as an effective electrolyte additive for improved performance of silicon-based lithium-ion full cells[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 28187-28198. |
41 | Zhu G B, Yang S M, Wang Y, et al. Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries[J]. RSC Advances, 2019, 9(1): 435-443. |
42 | Liu G P, Jiao T P, Cheng Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(9): 10323-10332. |
43 | Schmiegel J P, Nölle R, Henschel J, et al. Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research[J]. Cell Reports Physical Science, 2021, 2(2): 100327. |
44 | Aupperle F, von Aspern N, Berghus D, et al. The role of electrolyte additives on the interfacial chemistry and thermal reactivity of Si-anode-based Li-ion battery[J]. ACS Applied Energy Materials, 2019, 2(9): 6513-6527. |
45 | 胡华坤, 薛文东, 霍思达, 等. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
Hu H K, Xue W D, Huo S D, et al. Review of SEI film forming additives for electrolyte of lithium ion battery[J]. CIESC Journal, 2022, 73(4): 1436-1454. | |
46 | Tong B, Song Z Y, Wan H H, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries[J]. InfoMat, 2021, 3(12): 1364-1392. |
47 | Liu X, Sun X H, Shi X X, et al. Low-temperature and high-performance Si/graphite composite anodes enabled by sulfite additive[J]. Chemical Engineering Journal, 2021, 421: 127782. |
48 | Wang J L, Luo H, Mai Y J, et al. Synthesis of aminoalkylsilanes with oligo(ethylene oxide) unit as multifunctional electrolyte additives for lithium-ion batteries[J]. Science China Chemistry, 2013, 56(6): 739-745. |
49 | Liu H D, Naylor A J, Menon A S, et al. Understanding the roles of tris(trimethylsilyl) phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2(NMC811)/silicon–graphite (Si–Gr) lithium-ion batteries[J]. Advanced Materials Interfaces, 2020, 7(15): 2000277. |
50 | Kim H S, Kim T H, Park S S, et al. Interphasial engineering via individual moiety functionalized organosilane single-molecule for extreme quick rechargeable SiO/NCM811 lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44348-44357. |
51 | Yang G, Frisco S, Tao R M, et al. Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes[J]. ACS Energy Letters, 2021, 6(5): 1684-1693. |
52 | Cai Y J, Xu T H, Meng X L, et al. Formation of robust CEI film on high voltage LiNi0.6Co0.2Mn0.2O2 cathode enabled by functional [PIVM][TFSA] ionic liquid additive[J]. Electrochimica Acta, 2022, 424: 140679. |
53 | Sanchez-Ramirez N, Assresahegn B D, Torresi R M, et al. Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes[J]. Energy Storage Materials, 2020, 25: 477-486. |
54 | Cai Y J, Xu T H, von Solms N, et al. Multifunctional imidazolium-based ionic liquid as additive for silicon/carbon lithium ion batteries[J]. Electrochimica Acta, 2020, 340: 135990. |
55 | Li F R, Xu J, Hou Z W, et al. Silicon anodes for high-performance storage devices: structural design, material compounding, advances in electrolytes and binders[J]. ChemNanoMat, 2020, 6(5): 720-738. |
56 | Dong H, Ding H, Zhang N S, et al. Effects of LiCl template amount on structure, morphology, and electrochemical performance of porous Si@C anodes[J]. Ionics, 2022, 28(6): 2635-2648. |
57 | Han B H, Liao C, Dogan F, et al. Using mixed salt electrolytes to stabilize silicon anodes for lithium-ion batteries via in situ formation of Li-M-Si ternaries (M = Mg, Zn, Al, Ca)[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29780-29790. |
58 | Zhang Y Y, Li X, Sivonxay E, et al. Silicon anodes with improved calendar life enabled by multivalent additives[J]. Advanced Energy Materials, 2021, 11(37): 2101820. |
59 | Zhou M, Jin C, Zheng W, et al. A novel MEMP-DFOB electrolyte additive to improve low-high temperature performances of SiO/Gr anode based pouch full cells[J]. Journal of Electroanalytical Chemistry, 2021, 898: 115639. |
60 | Ha Y, Martin T R, Frisco S, et al. Evaluating the effect of electrolyte additive functionalities on NMC622/Si cell performance[J]. Journal of the Electrochemical Society, 2022, 169(7): 070515. |
61 | Zheng X Z, Fang G H, Pan Y, et al. Synergistic effect of fluoroethylene carbonate and lithium difluorophosphate on electrochemical performance of SiC-based lithium-ion battery[J]. Journal of Power Sources, 2019, 439: 227081. |
62 | Cao Z, Zheng X Y, Qu Q T, et al. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase[J]. Advanced Materials, 2021, 33(38): e2103178. |
63 | Haridas A K, Nguyen Q A, Terlier T, et al. Investigating the compatibility of TTMSP and FEC electrolyte additives for LiNi0.5Mn0.3Co0.2O2(NMC)-silicon lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2662-2673. |
64 | Yang H W, Kang W S, Kim S J. A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiO x anode for Li-ion batteries[J]. Electrochimica Acta, 2022, 412: 140107. |
65 | Xu Z X, Yang J, Qian J, et al. Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries[J]. Energy Storage Materials, 2019, 20: 388-394. |
66 | Zhang C Z, Jiang J C, Huang A C, et al. A novel multifunctional additive strategy improves the cycling stability and thermal stability of SiO/C anode Li-ion batteries[J]. Process Safety and Environmental Protection, 2022, 164: 555-565. |
67 | Yang Y Z, Yang Z, Xu Y S, et al. Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase modulation for high performance SiO anodes[J]. Journal of Power Sources, 2021, 514: 230595. |
68 | Kim J W, Seong M J, Park D W, et al. Anti-corrosive and surface-stabilizing functional electrolyte containing LiFSI and LiPO2F2 for SiO x /NCM811-based batteries[J]. Corrosion Science, 2022, 198: 110117. |
69 | Park S, Jeong S Y, Lee T K, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries[J]. Nature Communications, 2021, 12: 838. |
70 | Wölke C, Sadeghi B A, Eshetu G G, et al. Interfacing Si-based electrodes: impact of liquid electrolyte and its components[J]. Advanced Materials Interfaces, 2022, 9(8): 2101898. |
71 | Ai W L, Kirkaldy N, Jiang Y, et al. A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes[J]. Journal of Power Sources, 2022, 527: 231142. |
72 | Huang W B, Wang Y, Lv L Z, et al. 1-Hydroxyethylidene-1, 1-diphosphonic acid: a multifunctional interface modifier for eliminating HF in silicon anode[J]. Energy Storage Materials, 2021, 42: 493-501. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[11] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[12] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[15] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||