化工学报 ›› 2023, Vol. 74 ›› Issue (2): 585-598.DOI: 10.11949/0438-1157.20221204
收稿日期:
2022-09-05
修回日期:
2022-12-25
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
秦荷杰
作者简介:
查坦捷(1995—),男,硕士研究生,892788451@qq.com
基金资助:
Tanjie ZHA1(), Han YANG2, Hejie QIN2(), Xiaohong GUAN1,2
Received:
2022-09-05
Revised:
2022-12-25
Online:
2023-02-05
Published:
2023-03-21
Contact:
Hejie QIN
摘要:
仿生材料是模仿生物形貌或分子结构并具有相似功能的合成材料,在水环境化学领域的研究中被广泛关注。综述了仿生材料在该领域的研究现状。首先,总结了仿生材料的构建方法,包括生物活性单元负载或重构、活性中心结构仿生、催化环境仿生和形貌仿生。其次,梳理了仿生材料在水中污染物的氧化去除、还原去除以及检测方面的研究进展。总体而言,其独特的结构、作用机制与优异效能使其具有较强的实际应用潜力,其微观结构与效能的相关关系及最优化结构的可控合成方法是后续研究要关注的关键问题。最后,论述了水环境化学领域中仿生材料研究所面临的挑战和未来的发展方向。
中图分类号:
查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598.
Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry[J]. CIESC Journal, 2023, 74(2): 585-598.
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
磺酸酞菁铁负载于 中孔分子筛 | 0.1 mmol/L 孔雀绿 | 材料+H2O2+可见光 | 光照:500 W卤灯,可见光;T=50℃;pH0=6.0; [材料]=200 mg/L,[H2O2]=6.0 mmol/L | 污染物:100%(1200 min) TOC:72%(1200 min) | 0.00387 min-1 | HO• | [ |
四羧基酞菁铁(3.6%(质量))负载于大孔 SiO2 | 10 μmol/L 罗丹明B | 材料+O2+可见光 | 光照:150 W,λ≥400 nm;[材料]=1 g/L | 97.4%(60 min) | 0.06 min-1 | — | [ |
酞菁铁(3.8 mg Fe/g)负 载于改性聚丙烯腈纤维 | 0.02 mmol/L 罗丹明B | 材料+H2O2;材料+ H2O2+可见光 | 光照:9.11 mW/cm2,λ>420 nm;T=(25±1)℃; pH0=6.0;[材料]=4 g/L,[H2O2]=5 mmol/L | 83%(60 min) 99%(60 min) | — | Fe(Ⅳ)O、HO• | [ |
酞菁铁负载于改性 聚丙烯腈纤维 | 100 mg/L盐酸 四环素 | 材料+PMS | T=298 K;pH0=4.0;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 污染物:83%(280 min) TOC:30%(280 min) | 0.00035 min-1 | SO | [ |
酞菁铁(1.47 mg Fe/g) 负载于聚苯乙烯 | 100 mg/L盐酸 土霉素 | 材料+ H2O2 | T=308 K;pH0=4.0;[材料]=0.5 g/L, [H2O2]=60 mmol/L | 90%(500 min) | — | HO• | [ |
酞菁铁(0.16 mmol/g) 负载于改性多壁 碳纳米管 | 0.05 mmol/L 四氯苯酚 | 材料+ H2O2 | T=50℃;pH0=7;[材料]=0.1 g/L,[H2O2]=5 mmol/L | 100%(90 min) | 0.06293 min-1 | HO•、HOO• | [ |
三硝基酞菁铁(2.92 mg Fe/g)负载于活性碳 纤维 | 0.05 mmol/L磺胺 甲唑 | 材料+ H2O2 | T=50℃;[材料]=0.1 g/L;[H2O2]=20 mmol/L | 99%(90 min) | — | HO•、Fe(Ⅳ)O、HOO• | [ |
聚酞菁铁负载于g-C3N4 | 25 μmol/L卡马 西平 | 材料+PMS+光 | 光照:模拟太阳光;pH0=7;[材料]=0.1 g/L, [PMS]=0.3 mmol/L | 100%(15 min) | — | 1O2、SO | [ |
酞菁铁负载于TiO2 | 10 mg/L甲基橙 | 材料+H2O2+可见光 | 光照:150 W,28 mW/cm2,λ>400 nm;T=50℃; pH0=7;[材料]=0.5 g/L | 94%(180 min) | — | HO• | [ |
酞菁铁(0.52%(质量)Fe)负载于海绵 | 2 mg/L双酚A | 材料+H2O2+紫外光 | 光照:紫外光,λ>150 nm;pH0=2;[材料]=0.04 g, [H2O2]=0.32 mol/L | 100%(20 min) | 0.0918 min-1 (20 mg/L双酚A) | HO• | [ |
酞菁铁负载于钴尖晶石 | 10 mg/L罗丹明B | 材料+ H2O2 | T=25℃;[材料]=0.50 g/L,[H2O2]=50 mmol/L | 90%(120 min) | 0.02167 min-1 | O | [ |
酞菁钴(16.5%(质量)) 负载于改性多壁碳 纳米管 | 0.05 mmol/L 酸性红 | 材料+H2O2 | T=50℃;pH0=10;[材料] =0.1 g/L, [H2O2] =0.01 mol/L | >98%(60 min) | — | Co(Ⅳ)O | [ |
酞菁钴(14.9 μmol/g) 负载于纤维素 | 0.05 mmol/L 酸性红 | 材料+ H2O2 材料+PMS | T=50℃;pH0=6.7;[材料]=2.0 g/L, [PMS]=1.0 mmol/L,[H2O2]=1.0 mmol/L | 5%(35 min,H2O2体系);100%(35 min,PMS体系) | 0.0003 min-1(H2O2体系);0.0688 min-1(PMS体系) | PMS体系:SO | [ |
酞菁钴负载于改性 分子筛 | 5 mg/L普兰洛尔 | 材料+PMS | T=25℃;pH0=5.7±0.2;[材料]=0.1 g/L, [PMS]=0.2 g/L | 93.6%(30 min) | 0.0920 min-1 | 1O2、SO | [ |
磺酸基酞菁钴(2.24% (质量))负载于TiO2 | 40 mg/L 2,4- 二氯酚 | 材料+ H2O2+紫外光 | 光照:400 W,紫外光;pH0=5;[材料]=0.2 g/L,[H2O2]=0.03 mol/L | 94%(150 min) | — | [ |
表1 生物活性单元负载型材料用于氧化去除污染物的效能总结
Table 1 The performance of bioactive molecule-loaded materials for the oxidative removal of contaminants
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
磺酸酞菁铁负载于 中孔分子筛 | 0.1 mmol/L 孔雀绿 | 材料+H2O2+可见光 | 光照:500 W卤灯,可见光;T=50℃;pH0=6.0; [材料]=200 mg/L,[H2O2]=6.0 mmol/L | 污染物:100%(1200 min) TOC:72%(1200 min) | 0.00387 min-1 | HO• | [ |
四羧基酞菁铁(3.6%(质量))负载于大孔 SiO2 | 10 μmol/L 罗丹明B | 材料+O2+可见光 | 光照:150 W,λ≥400 nm;[材料]=1 g/L | 97.4%(60 min) | 0.06 min-1 | — | [ |
酞菁铁(3.8 mg Fe/g)负 载于改性聚丙烯腈纤维 | 0.02 mmol/L 罗丹明B | 材料+H2O2;材料+ H2O2+可见光 | 光照:9.11 mW/cm2,λ>420 nm;T=(25±1)℃; pH0=6.0;[材料]=4 g/L,[H2O2]=5 mmol/L | 83%(60 min) 99%(60 min) | — | Fe(Ⅳ)O、HO• | [ |
酞菁铁负载于改性 聚丙烯腈纤维 | 100 mg/L盐酸 四环素 | 材料+PMS | T=298 K;pH0=4.0;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 污染物:83%(280 min) TOC:30%(280 min) | 0.00035 min-1 | SO | [ |
酞菁铁(1.47 mg Fe/g) 负载于聚苯乙烯 | 100 mg/L盐酸 土霉素 | 材料+ H2O2 | T=308 K;pH0=4.0;[材料]=0.5 g/L, [H2O2]=60 mmol/L | 90%(500 min) | — | HO• | [ |
酞菁铁(0.16 mmol/g) 负载于改性多壁 碳纳米管 | 0.05 mmol/L 四氯苯酚 | 材料+ H2O2 | T=50℃;pH0=7;[材料]=0.1 g/L,[H2O2]=5 mmol/L | 100%(90 min) | 0.06293 min-1 | HO•、HOO• | [ |
三硝基酞菁铁(2.92 mg Fe/g)负载于活性碳 纤维 | 0.05 mmol/L磺胺 甲唑 | 材料+ H2O2 | T=50℃;[材料]=0.1 g/L;[H2O2]=20 mmol/L | 99%(90 min) | — | HO•、Fe(Ⅳ)O、HOO• | [ |
聚酞菁铁负载于g-C3N4 | 25 μmol/L卡马 西平 | 材料+PMS+光 | 光照:模拟太阳光;pH0=7;[材料]=0.1 g/L, [PMS]=0.3 mmol/L | 100%(15 min) | — | 1O2、SO | [ |
酞菁铁负载于TiO2 | 10 mg/L甲基橙 | 材料+H2O2+可见光 | 光照:150 W,28 mW/cm2,λ>400 nm;T=50℃; pH0=7;[材料]=0.5 g/L | 94%(180 min) | — | HO• | [ |
酞菁铁(0.52%(质量)Fe)负载于海绵 | 2 mg/L双酚A | 材料+H2O2+紫外光 | 光照:紫外光,λ>150 nm;pH0=2;[材料]=0.04 g, [H2O2]=0.32 mol/L | 100%(20 min) | 0.0918 min-1 (20 mg/L双酚A) | HO• | [ |
酞菁铁负载于钴尖晶石 | 10 mg/L罗丹明B | 材料+ H2O2 | T=25℃;[材料]=0.50 g/L,[H2O2]=50 mmol/L | 90%(120 min) | 0.02167 min-1 | O | [ |
酞菁钴(16.5%(质量)) 负载于改性多壁碳 纳米管 | 0.05 mmol/L 酸性红 | 材料+H2O2 | T=50℃;pH0=10;[材料] =0.1 g/L, [H2O2] =0.01 mol/L | >98%(60 min) | — | Co(Ⅳ)O | [ |
酞菁钴(14.9 μmol/g) 负载于纤维素 | 0.05 mmol/L 酸性红 | 材料+ H2O2 材料+PMS | T=50℃;pH0=6.7;[材料]=2.0 g/L, [PMS]=1.0 mmol/L,[H2O2]=1.0 mmol/L | 5%(35 min,H2O2体系);100%(35 min,PMS体系) | 0.0003 min-1(H2O2体系);0.0688 min-1(PMS体系) | PMS体系:SO | [ |
酞菁钴负载于改性 分子筛 | 5 mg/L普兰洛尔 | 材料+PMS | T=25℃;pH0=5.7±0.2;[材料]=0.1 g/L, [PMS]=0.2 g/L | 93.6%(30 min) | 0.0920 min-1 | 1O2、SO | [ |
磺酸基酞菁钴(2.24% (质量))负载于TiO2 | 40 mg/L 2,4- 二氯酚 | 材料+ H2O2+紫外光 | 光照:400 W,紫外光;pH0=5;[材料]=0.2 g/L,[H2O2]=0.03 mol/L | 94%(150 min) | — | [ |
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
Fe-N4活性中心(1.2%(质量)Fe), g-C3N4基底 | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ≥420 nm;pH0=3.0;[材料]=0.2 g/L, [H2O2]=20 mmol/L | 99.6%(40 min) | 0.0535 min-1 | HO•、O | [ |
Fe-N4活性中心,g-C3N4、 Bi2WO6基底 | 10 mg/L 四环素 | 材料+H2O2+可见光 | 光照:500 W,λ>420 nm;pH0=6.5;[材料]=0.4 g/L, [H2O2]=1 mmol/L | 93.9%(120 min) | 0.02342 min-1 | 1O2、O | [ |
Fe-N4活性中心(0.26%(atom)Fe), 氮掺杂碳基底 | 0.1 mmol/L 双酚A | 材料+PMS; 材料+H2O2+可见光 | T=30℃;pH0=6.7;[材料]=0.05 g/L,[PMS]=2 mmol/L | 100%(3 min) | 1.99 min-1 | SO | [ |
Fe-N4活性中心(7.0%(质量)Fe), 氮掺杂碳基底 | 0.1 mmol/L 4-氯酚 | 材料+PMS | T=20℃;[材料]=0.05 g/L,[PMS]=20 mmol/L | 100%(10 min) | 0.55 min-1 | 1O2 | [ |
Fe-N4活性中心(0.81%(质量)Fe), 氮掺杂碳基底 | 0.05 g/L 酸性橙 | 材料+PMS | T=25℃;pH0=9.1;[材料]=0.1 g/L,[PMS]=0.3 g/L | 100%(60 min) | 0.117 min-1 | 1O2、SO | [ |
Fe-N4活性中心(0.14%(质量)Fe), 氮掺杂碳基底 | 10 mg/L磺胺 甲唑 | 材料+PMS+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=7.0; [材料]=0.05 g/L,[PMS]=0.5 mmol/L | 98.7%(6 min) | 0.602 min-1 | 1O2、HO•、O | [ |
Mn-N4活性中心,g-C3N4基底 | 2 mmol/L 草酸 | 材料+H2O2+O3 | pH0=3;[材料]=0.1 g/L,[H2O2]=0.39 mmol/L, [臭氧]=30 mg/L(流量100 ml/min) | 100%(45 min) | — | HO• | [ |
Co活性中心,硼、氮掺杂碳基底 | 50 mg/L四环素 | 材料+PMS | T=25℃;pH0=7;[材料]=0.6 g/L,[PMS]=0.6 g/L | 100%(30 min) | — | 1O2 | [ |
PPyC@Py-MIL(Fe) | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=6.5; [材料]=100 mg/L,[H2O2]=1 mmol/L | 污染物:95%(20 min); TOC:93%(60 min) | 0.1685 min-1 0.0434 min-1 | HO• | [ |
Fe3(HITP)2 (Fe 18.1%(质量)) | 20 mg/L 四环素 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=室温;pH0=4.5; [材料]=0.4 g/L,[H2O2]=20 mmol/L | 96.7%(30 min) | 0.06 min-1 | [ | |
Pca-MIL88(Fe) (Fe 6.4%(atom)) | 50 mg/L 啶虫脒 | 材料+ H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;[材料]=0.14 g/L, [H2O2]=0.006853 mol/L | 污染物:100%(60 min); TOC:97%(90 min) | 0.0706 min-1 | HO• | [ |
N-Fe-MOFs | 20 mg/L 甲基橙 | 材料+可见光 | 光照:500 W,可见光;[材料]=0.8 g/L | 97%(48 min) | — | 光生空穴、 光生电子 | [ |
表2 活性中心结构仿生材料用于氧化去除污染物的效能总结
Table 2 The performance of catalysts with enzyme-like active sites on the oxidative removal of contaminants
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
Fe-N4活性中心(1.2%(质量)Fe), g-C3N4基底 | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ≥420 nm;pH0=3.0;[材料]=0.2 g/L, [H2O2]=20 mmol/L | 99.6%(40 min) | 0.0535 min-1 | HO•、O | [ |
Fe-N4活性中心,g-C3N4、 Bi2WO6基底 | 10 mg/L 四环素 | 材料+H2O2+可见光 | 光照:500 W,λ>420 nm;pH0=6.5;[材料]=0.4 g/L, [H2O2]=1 mmol/L | 93.9%(120 min) | 0.02342 min-1 | 1O2、O | [ |
Fe-N4活性中心(0.26%(atom)Fe), 氮掺杂碳基底 | 0.1 mmol/L 双酚A | 材料+PMS; 材料+H2O2+可见光 | T=30℃;pH0=6.7;[材料]=0.05 g/L,[PMS]=2 mmol/L | 100%(3 min) | 1.99 min-1 | SO | [ |
Fe-N4活性中心(7.0%(质量)Fe), 氮掺杂碳基底 | 0.1 mmol/L 4-氯酚 | 材料+PMS | T=20℃;[材料]=0.05 g/L,[PMS]=20 mmol/L | 100%(10 min) | 0.55 min-1 | 1O2 | [ |
Fe-N4活性中心(0.81%(质量)Fe), 氮掺杂碳基底 | 0.05 g/L 酸性橙 | 材料+PMS | T=25℃;pH0=9.1;[材料]=0.1 g/L,[PMS]=0.3 g/L | 100%(60 min) | 0.117 min-1 | 1O2、SO | [ |
Fe-N4活性中心(0.14%(质量)Fe), 氮掺杂碳基底 | 10 mg/L磺胺 甲唑 | 材料+PMS+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=7.0; [材料]=0.05 g/L,[PMS]=0.5 mmol/L | 98.7%(6 min) | 0.602 min-1 | 1O2、HO•、O | [ |
Mn-N4活性中心,g-C3N4基底 | 2 mmol/L 草酸 | 材料+H2O2+O3 | pH0=3;[材料]=0.1 g/L,[H2O2]=0.39 mmol/L, [臭氧]=30 mg/L(流量100 ml/min) | 100%(45 min) | — | HO• | [ |
Co活性中心,硼、氮掺杂碳基底 | 50 mg/L四环素 | 材料+PMS | T=25℃;pH0=7;[材料]=0.6 g/L,[PMS]=0.6 g/L | 100%(30 min) | — | 1O2 | [ |
PPyC@Py-MIL(Fe) | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=6.5; [材料]=100 mg/L,[H2O2]=1 mmol/L | 污染物:95%(20 min); TOC:93%(60 min) | 0.1685 min-1 0.0434 min-1 | HO• | [ |
Fe3(HITP)2 (Fe 18.1%(质量)) | 20 mg/L 四环素 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=室温;pH0=4.5; [材料]=0.4 g/L,[H2O2]=20 mmol/L | 96.7%(30 min) | 0.06 min-1 | [ | |
Pca-MIL88(Fe) (Fe 6.4%(atom)) | 50 mg/L 啶虫脒 | 材料+ H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;[材料]=0.14 g/L, [H2O2]=0.006853 mol/L | 污染物:100%(60 min); TOC:97%(90 min) | 0.0706 min-1 | HO• | [ |
N-Fe-MOFs | 20 mg/L 甲基橙 | 材料+可见光 | 光照:500 W,可见光;[材料]=0.8 g/L | 97%(48 min) | — | 光生空穴、 光生电子 | [ |
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速度常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
β-环糊精修饰的Fe3O4@TiO2 | 20 mg/L双酚A | 材料+紫外光 | 光照:400 W水银灯;[材料]=1 g/L | 99%(60 min),100%(105 min) | — | — | [ |
β-CD修饰的TiO2 | 10 mg/L亚甲基蓝 | 材料+可见光 | 光照:250 W,λ>420 nm;pH0=7.0; [材料]=1.0 g/L | 82%(10 h) | 0.16105 min-1 | O | [ |
羧甲基-β-环糊精改性的 自制钛纳米管 | 20 mg/L 2,4-二氯 苯酚 20 mg/L卡马西平 20 mg/L 双酚A 20 mg/L双酚S | 材料+紫外光 | 光照:10 W汞灯;pH0=4 [材料]=1 mg/ml | 97.5%(150 min) 96.1%(150 min) 96.0%(150 min) 99.5%(150 min) | 0.0232 min-1 0.0261 min-1 0.0208 min-1 0.0399 min-1 | O | [ |
MnO x 、SH-β-环糊精共修饰的 金纳米团簇锚定于空心 CdS球体 | 20 mg/L双酚A | 材料+可见光 | 光照:700 mW/cm2,λ>420 nm;T=25℃;pH0=6.8;[材料]=1 mg/ml | 93%(30 min) | 9.04×10-2 min-1 | HO• | [ |
β-环糊精修饰的MnFe2O4 | 40 mg/L 2,4-二氯 苯酚 | 材料+PMS | T=25℃;pH0=5.98;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 97%(60 min) | 0.0594 min-1 | 1O2、SO | [ |
La、Fe3O4共负载于β-环糊精 Ce、Fe3O4共负载于β-环糊精 | 50 mg/L阳离子蓝 | 材料+H2O2 | T=室温;pH0=4;[材料]=2 g/L, [H2O2]=30 mmol/L | 98%(20 min) 99%(10 min) | — | — | [ |
Fe3O4负载于β-环糊精 | 100 mg/L 4-氯苯 | 材料+H2O2 | T=20℃;pH0=3;[材料]=2 g/L, [H2O2]=30 mmol/L | 100%(90 min) | 0.0373 min-1 | HO• | [ |
β-环糊精、还原氧化石墨烯 共改性的Fe3O4 | 20 mg/L双酚A | 材料+H2O2 | T=25℃;pH0=4.85;[材料]=0.5 g/L, [H2O2]=10 mmol/L,[NH2OH]=4 mmol/L | 100%(30 min) | 0.15733 min-1 | HO• | [ |
β-环糊精改性的生物炭 | 20 mg/L双酚A | 材料+PDS | T=25℃;pH0=7.0;[材料]=0.4 g/L, [PDS]=0.5 mmol/L | 91.6%(30 min) | — | 非自由基机制,以电子传递机制为主 | [ |
以番茄皮为模板制备的CuO 负载于氧化石墨烯 | 100 mg/L对乙酰 氨基酚 | 材料+高温高压 | T=150℃;pH≈5.5(过程控制);P =1.0 MPa;[材料]=0.5 g/L | 污染物:96.2%(反应最后1 h); TOC:52.1%(反应最后1 h) | — | — | [ |
具有仿生分级结构的NiO 纳米线 | 8.30×10-4mol/L 亚甲基蓝 | 材料+紫外光 | 光照:30 mW/cm2,紫外光; [材料]=0.65 g/L | 97%(180 min) | 0.01907 min-1 | — | [ |
具有仿生减反射异质纳米结 结构的ZnO纳米棒包覆硅 | 罗丹明6G | 材料+光 | 光照:300 W氙灯 | 约100%(6 h) | — | — | [ |
TiO2负载于金纳米棒 | 5 mg/L罗丹明B | 材料+可见光 | 光照:300 W,100 mW/cm2,λ=420~780 nm;[材料]=1 g/L | 98.9%(90 min) | 4.98×10-2 min-1 | — | [ |
表3 催化环境、形貌仿生材料用于氧化去除污染物的效能总结
Table 3 The performance of biomorphic catalysts or materials with catalytic environments of natural materials on the oxidative removal of contaminants
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速度常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
β-环糊精修饰的Fe3O4@TiO2 | 20 mg/L双酚A | 材料+紫外光 | 光照:400 W水银灯;[材料]=1 g/L | 99%(60 min),100%(105 min) | — | — | [ |
β-CD修饰的TiO2 | 10 mg/L亚甲基蓝 | 材料+可见光 | 光照:250 W,λ>420 nm;pH0=7.0; [材料]=1.0 g/L | 82%(10 h) | 0.16105 min-1 | O | [ |
羧甲基-β-环糊精改性的 自制钛纳米管 | 20 mg/L 2,4-二氯 苯酚 20 mg/L卡马西平 20 mg/L 双酚A 20 mg/L双酚S | 材料+紫外光 | 光照:10 W汞灯;pH0=4 [材料]=1 mg/ml | 97.5%(150 min) 96.1%(150 min) 96.0%(150 min) 99.5%(150 min) | 0.0232 min-1 0.0261 min-1 0.0208 min-1 0.0399 min-1 | O | [ |
MnO x 、SH-β-环糊精共修饰的 金纳米团簇锚定于空心 CdS球体 | 20 mg/L双酚A | 材料+可见光 | 光照:700 mW/cm2,λ>420 nm;T=25℃;pH0=6.8;[材料]=1 mg/ml | 93%(30 min) | 9.04×10-2 min-1 | HO• | [ |
β-环糊精修饰的MnFe2O4 | 40 mg/L 2,4-二氯 苯酚 | 材料+PMS | T=25℃;pH0=5.98;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 97%(60 min) | 0.0594 min-1 | 1O2、SO | [ |
La、Fe3O4共负载于β-环糊精 Ce、Fe3O4共负载于β-环糊精 | 50 mg/L阳离子蓝 | 材料+H2O2 | T=室温;pH0=4;[材料]=2 g/L, [H2O2]=30 mmol/L | 98%(20 min) 99%(10 min) | — | — | [ |
Fe3O4负载于β-环糊精 | 100 mg/L 4-氯苯 | 材料+H2O2 | T=20℃;pH0=3;[材料]=2 g/L, [H2O2]=30 mmol/L | 100%(90 min) | 0.0373 min-1 | HO• | [ |
β-环糊精、还原氧化石墨烯 共改性的Fe3O4 | 20 mg/L双酚A | 材料+H2O2 | T=25℃;pH0=4.85;[材料]=0.5 g/L, [H2O2]=10 mmol/L,[NH2OH]=4 mmol/L | 100%(30 min) | 0.15733 min-1 | HO• | [ |
β-环糊精改性的生物炭 | 20 mg/L双酚A | 材料+PDS | T=25℃;pH0=7.0;[材料]=0.4 g/L, [PDS]=0.5 mmol/L | 91.6%(30 min) | — | 非自由基机制,以电子传递机制为主 | [ |
以番茄皮为模板制备的CuO 负载于氧化石墨烯 | 100 mg/L对乙酰 氨基酚 | 材料+高温高压 | T=150℃;pH≈5.5(过程控制);P =1.0 MPa;[材料]=0.5 g/L | 污染物:96.2%(反应最后1 h); TOC:52.1%(反应最后1 h) | — | — | [ |
具有仿生分级结构的NiO 纳米线 | 8.30×10-4mol/L 亚甲基蓝 | 材料+紫外光 | 光照:30 mW/cm2,紫外光; [材料]=0.65 g/L | 97%(180 min) | 0.01907 min-1 | — | [ |
具有仿生减反射异质纳米结 结构的ZnO纳米棒包覆硅 | 罗丹明6G | 材料+光 | 光照:300 W氙灯 | 约100%(6 h) | — | — | [ |
TiO2负载于金纳米棒 | 5 mg/L罗丹明B | 材料+可见光 | 光照:300 W,100 mW/cm2,λ=420~780 nm;[材料]=1 g/L | 98.9%(90 min) | 4.98×10-2 min-1 | — | [ |
仿生材料 | 目标污染物 | 主要 产物 | 反应体系 | 反应条件 | 去除率 (时间) | 一级反应 速率常数 | 文献 |
---|---|---|---|---|---|---|---|
Mo、双齿氮配体、Pd 共负载的碳材料 | 1 mmol/L NaClO4 | Cl- | 材料+H2(电 子供体) | T=20℃;pH=2.9~3.0(过程控制); [材料]=0.2 g/L,[H2]=0.1 MPa | 100% (60 min) | 0.0251 min-1 | [ |
Fe、Co、N共掺杂的 碳材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+甲酸 (电子供体) | T=25℃;pH0=1.74;[甲酸]=0.234 mol/L, [材料]=0.05 g/L | 100% (105 min) | 0.269 min-1 | [ |
Au负载于β-环糊精 | 5.64×10-4 mol/L 4-硝基苯酚 | 4-氨基 苯酚 | 材料+硼氢 化钠(电子 供体) | T=室温;[材料]=20 mg,[NaBH4]=0.495 mol/L | — | 0.1415 s-1 | [ |
β-环糊精修饰的MoS2、g-C3N4构成 的复合材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+光 | 光照:1000 mW,模拟太阳光;[材料]=0.4 g/L,[EDTA-2Na]=0.4 mmol/L | 76% (50 min) | — | [ |
Co(1.4%(质量))、 N、B共掺杂的 碳材料 | 50 mg/L氯霉素 | — | 三电极系统 | 电压:-0.9V vs AgCl;电极尺寸:1.0 cm×2.5 cm;对电极:铂丝,参比电极:Ag/AgCl, 工作电极:碳纤维纸(负载0.32 mg/cm2材料);电解液:0.067 mol/L Na2HPO4和KH2PO4;pH0=7 | 100% (3 h) | 1.6963 h-1 | [ |
Fe、N共掺杂的 碳材料 | 25 μmol/L三氯乙烯 | 乙烷、 乙烯 | 三电极系统 | 电压:-1.2 V vs AgCl;电极尺寸:2 cm×2 cm;对电极(阳极):Pt,参比电极:Ag/AgCl, 工作电极(阴极):玻碳电极(负载材料); 电解质:2 mmol/L Na2SO4;pH0=7.0 | 94% (8 h) | 0.36 h-1 | [ |
Fe、N、S共掺杂的碳 材料 | 100 mg N/L | N2、 | 三电极系统 | 电压:-0.67 V vs RHE;阳极:Ti/IrO2-Ru, 参比电极:Ag/AgCl,工作电极:材料; 电解质:100 mg N/L硝酸盐溶液、0.02 mol/L Na2SO4或NaCl;pH=6.7~7.8(过程控制) | — | 2.3×10-3 h-1 | [ |
Fe、N共掺杂的碳 材料 | 0.5 mol/L KNO3 | — | 三电极系统 | 电压:-0.85 V vs RHE;电流:100 mA/cm2;电极尺寸:1 cm×2 cm,浸泡尺寸:1 cm×1 cm;参比电极:饱和甘汞电极;对电极:铂箔;工作电极:铂碳电极(负载0.4 mg/cm2催化剂);电解质:0.1 mol/L K2SO4、0.5 mol/L KNO3 | — | — | [ |
表4 仿生材料用于还原去除污染物的效能总结
Table 4 The performance of biomimetic materials on the reductive removal of contaminants
仿生材料 | 目标污染物 | 主要 产物 | 反应体系 | 反应条件 | 去除率 (时间) | 一级反应 速率常数 | 文献 |
---|---|---|---|---|---|---|---|
Mo、双齿氮配体、Pd 共负载的碳材料 | 1 mmol/L NaClO4 | Cl- | 材料+H2(电 子供体) | T=20℃;pH=2.9~3.0(过程控制); [材料]=0.2 g/L,[H2]=0.1 MPa | 100% (60 min) | 0.0251 min-1 | [ |
Fe、Co、N共掺杂的 碳材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+甲酸 (电子供体) | T=25℃;pH0=1.74;[甲酸]=0.234 mol/L, [材料]=0.05 g/L | 100% (105 min) | 0.269 min-1 | [ |
Au负载于β-环糊精 | 5.64×10-4 mol/L 4-硝基苯酚 | 4-氨基 苯酚 | 材料+硼氢 化钠(电子 供体) | T=室温;[材料]=20 mg,[NaBH4]=0.495 mol/L | — | 0.1415 s-1 | [ |
β-环糊精修饰的MoS2、g-C3N4构成 的复合材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+光 | 光照:1000 mW,模拟太阳光;[材料]=0.4 g/L,[EDTA-2Na]=0.4 mmol/L | 76% (50 min) | — | [ |
Co(1.4%(质量))、 N、B共掺杂的 碳材料 | 50 mg/L氯霉素 | — | 三电极系统 | 电压:-0.9V vs AgCl;电极尺寸:1.0 cm×2.5 cm;对电极:铂丝,参比电极:Ag/AgCl, 工作电极:碳纤维纸(负载0.32 mg/cm2材料);电解液:0.067 mol/L Na2HPO4和KH2PO4;pH0=7 | 100% (3 h) | 1.6963 h-1 | [ |
Fe、N共掺杂的 碳材料 | 25 μmol/L三氯乙烯 | 乙烷、 乙烯 | 三电极系统 | 电压:-1.2 V vs AgCl;电极尺寸:2 cm×2 cm;对电极(阳极):Pt,参比电极:Ag/AgCl, 工作电极(阴极):玻碳电极(负载材料); 电解质:2 mmol/L Na2SO4;pH0=7.0 | 94% (8 h) | 0.36 h-1 | [ |
Fe、N、S共掺杂的碳 材料 | 100 mg N/L | N2、 | 三电极系统 | 电压:-0.67 V vs RHE;阳极:Ti/IrO2-Ru, 参比电极:Ag/AgCl,工作电极:材料; 电解质:100 mg N/L硝酸盐溶液、0.02 mol/L Na2SO4或NaCl;pH=6.7~7.8(过程控制) | — | 2.3×10-3 h-1 | [ |
Fe、N共掺杂的碳 材料 | 0.5 mol/L KNO3 | — | 三电极系统 | 电压:-0.85 V vs RHE;电流:100 mA/cm2;电极尺寸:1 cm×2 cm,浸泡尺寸:1 cm×1 cm;参比电极:饱和甘汞电极;对电极:铂箔;工作电极:铂碳电极(负载0.4 mg/cm2催化剂);电解质:0.1 mol/L K2SO4、0.5 mol/L KNO3 | — | — | [ |
59 | Gao Y W, Zhu Y, Li T, et al. Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation[J]. Environmental Science & Technology, 2021, 55(12): 8318-8328. |
60 | Zhang L S, Jiang X H, Zhong Z A, et al. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angewandte Chemie International Edition, 2021, 60(40): 21751-21755. |
61 | Zeng T, Li S Q, Hua J N, et al. Synergistically enhancing Fenton-like degradation of organics by in situ transformation from Fe3O4 microspheres to mesoporous Fe, N-dual doped carbon[J]. Science of the Total Environment, 2018, 645: 550-559. |
62 | Zhao X, Li X, Zhu Z, et al. Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen[J]. Applied Catalysis B: Environmental, 2022, 300: 120759. |
63 | He H, Wang Y X, Li J, et al. Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2022, 427: 131962. |
64 | Xing D N, Cui Z H, Liu Y Y, et al. Two-dimensional π-d conjugated metal-organic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2021, 290: 120029. |
65 | Wang Y X, Zhong Z, Muhammad Y, et al. Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation[J]. Chemical Engineering Journal, 2020, 398: 125684. |
66 | Jin X H, Tang T, Tao X M, et al. Regulating N content to anchor Fe in Fe-MOFs: obtaining multiple active sites as efficient photocatalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104133. |
67 | Wang M L, Gao Q H, Zhang M X, et al. Boosting peroxymonosulfate activation via highly active and durable cobalt catalysts[J]. Journal of Materials Chemistry A, 2021, 9(4): 2308-2318. |
68 | Li X N, Huang X, Xi S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. |
69 | Chalasani R, Vasudevan S. Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies[J]. ACS Nano, 2013, 7(5): 4093-4104. |
70 | Zhou Y, Lu J, Liu Q M, et al. A novel hollow-sphere cyclodextrin nanoreactor for the enhanced removal of bisphenol A under visible irradiation[J]. Journal of Hazardous Materials, 2020, 384: 121267. |
71 | 吴宏翔. 基于环糊精包合作用的聚氨酯功能型复合材料的制备与性能研究[D]. 上海: 华东理工大学, 2020. |
Wu H X. Synthesis and characterization of polyurethane functional composites based on cyclodextrin inclusive interactions[D]. Shanghai: East China University of Science and Technology, 2020. | |
72 | 刘琪铭. 环糊精改性二氧化钛材料对水中BPA等污染物的光催化去除[D]. 上海: 华东理工大学, 2020. |
Liu Q M. Photocatalytic removal of pollutants such as BPA by β-cyclodextrin modified titanium dioxide materials in wastewater[D]. Shanghai: East China University of Science and Technology, 2020. | |
73 | Zhou X J, Kong L H, Jing Z Y, et al. Facile synthesis of superparamagnetic β-CD-MnFe2O4 as a peroxymonosulfate activator for efficient removal of 2,4-dichlorophenol: structure, performance, and mechanism[J]. Journal of Hazardous Materials, 2020, 394: 122528. |
74 | Zhang Y M, Chen Z, Zhou L C, et al. Heterogeneous Fenton degradation of bisphenol A using Fe3O4@β-CD/rGO composite: synergistic effect, principle and way of degradation[J]. Environmental Pollution, 2019, 244: 93-101. |
75 | Wang M L, Fang G D, Liu P, et al. Fe3O4@β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP)[J]. Applied Catalysis B: Environmental, 2016, 188: 113-122. |
76 | 王昕怡, 汤登科, 章耀鹏, 等. 稀土-Fe3O4-CD复合材料制备及降解阳离子染料的性能研究[J]. 化学研究与应用, 2021, 33(8): 1595-1601. |
Wang X Y, Tang D K, Zhang Y P, et al. Preparation of rare earth-Fe3O4-CD composites and their performances in cationic dyes degradation[J]. Chemical Research and Application, 2021, 33(8): 1595-1601. | |
77 | Pei X Y, Ren H Y, Liu G S, et al. Non-radical mechanism and toxicity analysis of β-cyclodextrin functionalized biochar catalyzing the degradation of bisphenol A and its analogs by peroxydisulfate[J]. Journal of Hazardous Materials, 2022, 424: 127254. |
78 | Palas B, Ersoz G, Atalay S. Biotemplated copper oxide catalysts over graphene oxide for acetaminophen removal: reaction kinetics analysis and cost estimation[J]. Chemical Engineering Science, 2021, 242: 116593. |
79 | Qi D P, Zheng L Y, Cao X B, et al. Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity[J]. Nanoscale, 2013, 5(24): 12383-12387. |
1 | Müller R, Oltmanns R H, Lingens F. Enzymatic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. SU DSM 20407[J]. Biological Chemistry Hoppe-Seyler, 1988, 369(7): 567-571. |
2 | Zhu Q Q, Maeno S, Nishimoto R, et al. Oxidative degradation of pentabromophenol in the presence of humic substances catalyzed by a SBA-15 supported iron-porphyrin catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2014, 385: 31-37. |
3 | 黄飞, 伍明, 韩端壮, 等. 四氮杂卟啉铁(Ⅱ)催化降解水中有机污染物[J]. 中南民族大学学报(自然科学版), 2003, 22(3): 6-9. |
Huang F, Wu M, Han D Z, et al. Iron(Ⅱ) porphrazine catalyzing degradation of organic pollutants in water medium[J]. Journal of South-Central College for Nationalities (Natural Sciences), 2003, 22(3): 6-9. | |
4 | Sun Y, Zheng W S, Fu S, et al. Immobilization of iron phthalocyanine on 4-aminopyridine grafted polystyrene resin as a catalyst for peroxymonosulfate activation in eliminating tetracycline hydrochloride[J]. Chemical Engineering Journal, 2020, 391: 123611. |
5 | Shu J, Qiu Z L, Wei Q H, et al. Cobalt-porphyrin-platinum-functionalized reduced graphene oxide hybrid nanostructures: a novel peroxidase mimetic system for improved electrochemical immunoassay[J]. Scientific Reports, 2015, 5: 15113. |
6 | Cao X, Gao J, Yang Y F, et al. Synergistic degradation of chlorophenol pollutants by a photo-enzyme integrated catalyst[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107909. |
7 | 邓克俭. 催化分子氧降解水中有机污染物的研究[D]. 武汉: 武汉大学, 2004. |
Deng K J. Study on catalyzing dioxygen degradation of organic pollutants in aqueous solutions[D]. Wuhan: Wuhan University, 2004. | |
8 | 熊键. 蒙脱石固定高铁血红素合成仿生材料催化降解2,4,6-三氯酚研究[D]. 南京: 南京大学, 2014. |
Xiong J. Hemin immobilized in montmorillonite interlayer as a biomimetic catalyst for 2,4,6-trichlorophenol degradation[D]. Nanjing: Nanjing University, 2014. | |
9 | 罗智明, 欧炳辉, 郭海敏, 等. 壳聚糖固载金属卟啉磁性微球的合成、表征及对甲基橙废水的催化研究[J]. 广东药学院学报, 2013, 29(4): 370-373. |
80 | Yao Y J, Yin H Y, Zhang Y Y, et al. Fe, Cu-coordinated ZIF-derived bimetal encapsulated N-doped carbon nanotube for efficient remediation of various aqueous pollutants[J]. Chemical Engineering Journal, 2021, 426: 131801. |
81 | Ren C X, Yang P, Sun J N, et al. A bioinspired molybdenum catalyst for aqueous perchlorate reduction[J]. Journal of the American Chemical Society, 2021, 143(21): 7891-7896. |
82 | 胡兵. 超分子共价有机聚合物/金属纳米粒子复合材料的合成及其催化性质研究[D]. 赣州: 赣南师范大学, 2021. |
Hu B. Synthesis and catalytic performance of supermolecule-based covalent organic polymers/metal nanoparticle composites[D]. Ganzhou: Gannan Normal University, 2021. | |
83 | Wu Z S, He X F, Xue Y T, et al. Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr(Ⅵ) from simulated agricultural runoff[J]. Chemical Engineering Journal, 2020, 399: 125747. |
84 | Min Y, Zhou X, Chen J J, et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design[J]. Nature Communications, 2021, 12(1): 303. |
85 | Deng J, Hu X M, Gao E L, et al. Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon[J]. Journal of Hazardous Materials, 2021, 419: 126458. |
86 | Li J C, Li M, An N, et al. Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification[J]. Proceedings of the National Academy of Sciences, 2021, 118(33): e2105628118. |
87 | Wu Z Y, Karamad M, Yong X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12(1): 2870. |
88 | Du X D, Yi X H, Wang P, et al. Enhanced photocatalytic Cr(Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions[J]. Chinese Journal of Catalysis, 2019, 40(1): 70-79. |
89 | Zhang P, Sun D R, Cho A, et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis[J]. Nature Communications, 2019, 10(1): 940. |
90 | Wu Y, Jiao L, Luo X, et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity[J]. Small, 2019, 15(43): e1903108. |
9 | Luo Z M, Ou B H, Guo H M, et al. Magnetic chitosan-supported metalloporphyrin nanospheres: synthesis,characterization and catalysis for methyl orange wastewater[J]. Journal of Guangdong Pharmaceutical University, 2013, 29(4): 370-373. |
10 | Li Q, Wang X P, Xiong X Q, et al. Graphene-supported biomimetic catalysts with synergistic effect of adsorption and degradation for efficient dye capture and removal[J]. Chinese Chemical Letters, 2020, 31(1): 239-243. |
11 | Cocco G, Cocco A, Sollai F, et al. Bioinspired versus enzymatic oxidation of some homologous thionine dyes in the presence of immobilized metalloporphyrin catalysts and ligninolytic enzymes[J]. International Journal of Molecular Sciences, 2017, 18(12): 2553. |
12 | Burris D R, Delcomyn C A, Smith M H, et al. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems[J]. Environmental Science & Technology, 1996, 30(10): 3047-3052. |
13 | He W Z, Zhu Y, Zeng G M, et al. Efficient removal of perfluorooctanoic acid by persulfate advanced oxidative degradation: inherent roles of iron-porphyrin and persistent free radicals[J]. Chemical Engineering Journal, 2020, 392: 123640. |
14 | Christoforidis K C, Louloudi M, Deligiannakis Y. Complete dechlorination of pentachlorophenol by a heterogeneous SiO2-Fe-porphyrin catalyst[J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 297-302. |
15 | Li W X, He X F, Ge R Y, et al. Cobalt porphyrin (CoTCPP) advanced visible light response of g-C3N4 nanosheets[J]. Sustainable Materials and Technologies, 2019, 22: e00114. |
16 | 解婷婷, 迟莉娜, 刘瑞婷, 等. 金属有机框架固定化酶及其在环境中的应用[J]. 化工进展, 2019, 38(6): 2889-2897 |
Xie T T, Chi L N, Liu R T, et al. Immobilization of enzymes on metal-organic frameworks and its application in environmental fields[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2889-2897. | |
17 | An J, Li G L, Zhang Y F, et al. Recent advances in enzyme-nanostructure biocatalysts with enhanced activity[J]. Catalysts, 2020, 10(3): 338. |
18 | Ran F P, Zou Y L, Xu Y X, et al. Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water[J]. Chemical Engineering Journal, 2019, 375: 121947. |
19 | 赵睿南, 胡满成, 李淑妮, 等. 基于金属有机骨架的固定化氯过氧化物酶的制备和性能评价[J]. 化学学报, 2017, 75(3): 293-299 |
Zhao R N, Hu M C, Li S N, et al. Immobilization of chloroperoxidase in metal organic framework and its catalytic performance[J]. Acta Chimica Sinica, 2017, 75(3): 293-299. | |
20 | Liao F S, Lo W S, Hsu Y S, et al. Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach[J]. Journal of the American Chemical Society 2017, 139(19): 6530-6533. |
21 | Dong M J, Zhao M, Ou S, et al. A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules[J]. Angewandte Chemie International Edition, 2014, 53(6): 1575-1579. |
22 | Li M, Li Z L, Yu X L, et al. FeN4-doped carbon nanotubes derived from metal organic frameworks for effective degradation of organic dyes by peroxymonosulfate: impacts of FeN4 spin states[J]. Chemical Engineering Journal, 2022, 431: 133339. |
23 | Liu S A, Liu D, Sun Y L, et al. Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fenton-like reactions[J]. Applied Catalysis B: Environmental, 2022, 310: 121327. |
24 | 刘幸, 韩勇, 张亚如, 等. 介孔金属-有机框架(MesoMOFs)的合成研究进展[J]. 合成化学, 2019, 27(7): 568-575. |
Liu X, Han Y, Zhang Y R, et al. Research progress on synthesis of mesoporous metal-organic frameworks(MesoMOFs)[J]. Chinese Journal of Synthetic Chemistry, 2019, 27(7): 568-575. | |
25 | 武凯莉, 康永锋. 金属有机框架材料的可控合成概述[J]. 化工新型材料, 2022, 50(3): 226-229, 235. |
Wu K L, Kang Y F. Overview of controllable synthesis of metal-organic framework materials[J]. New Chemical Materials, 2022, 50(3): 226-229, 235. | |
26 | Chen G S, Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly[J]. Chemical Society Reviews, 2011, 40(5): 2254-2266. |
27 | 沈海民, 纪红兵, 武宏科, 等. β-环糊精的固载及其应用最新研究进展[J]. 有机化学, 2014, 34(8): 1549-1572. |
Shen H M, Ji H B, Wu H K, et al. Recent advances in the immobilization of β-cyclodextrin and their application[J]. Chinese Journal of Organic Chemistry, 2014, 34(8): 1549-1572. | |
28 | Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers[J]. Chemical Society Reviews, 2009, 38(4): 875-882. |
29 | Kumar A, Sharma G, Naushad M, et al. SPION/β-cyclodextrin core-shell nanostructures for oil spill remediation and organic pollutant removal from waste water[J]. Chemical Engineering Journal, 2015, 280: 175-187. |
30 | Jiang X, Sun C, Guo Y, et al. Peroxidase-like activity of apoferritin paired gold clusters for glucose detection[J]. Biosensors and Bioelectronics, 2015, 64: 165-170. |
31 | Gu Z N, Zhou J, An X Q, et al. A dual-biomimetic photocatalytic fuel cell for efficient electricity generation from degradation of refractory organic pollutants[J]. Applied Catalysis B: Environmental, 2021, 298: 120501. |
32 | Sun H, Zeng S, He Q R, et al. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity[J]. Dalton Transactions, 2017, 46(12): 3887-3894. |
33 | 潘超, 董丽, 马玲, 等. 仿生分级结构NiO纳米线/纳米纤维的可控制备及光催化性能[J]. 高等学校化学学报, 2013, 34(11): 2623-2628. |
Pan C, Dong L, Ma L, et al. Preparation of bio-inspired NiO nanowires/nanofibers hierarchical structures and their photocatalytic properties[J]. Chemical Journal of Chinese Universities, 2013, 34(11): 2623-2628. | |
34 | Zhu Z X, Lu W Y, Li N, et al. Pyridyl-containing polymer blends stabilized iron phthalocyanine to degrade sulfonamides by enzyme-like process[J]. Chemical Engineering Journal, 2017, 321: 58-66. |
35 | Sun Y, Feng X L, Fu S. Application of response surface methodology for optimization of oxytetracycline hydrochloride degradation using hydrogen peroxide/polystyrene-supported iron phthalocyanine oxidation process[J]. Water Science and Technology, 2020, 81(6): 1308-1318. |
36 | Li N, Lu P T, He C X, et al. Catalytic degradation of sulfaquinoxalinum by polyester/poly-4-vinylpyridine nanofibers-supported iron phthalocyanine[J]. Environmental Science and Pollution Research, 2018, 25(6): 5902-5910. |
37 | Wang Y, Fang Y, Lu W Y, et al. Oxidative removal of sulfa antibiotics by introduction of activated carbon fiber to enhance the catalytic activity of iron phthalocyanine[J]. Microporous and Mesoporous Materials, 2018, 261: 98-104. |
38 | Wang Q L, Li H Y, Yang J H, et al. Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2 [J]. Applied Catalysis B: Environmental, 2016, 192: 182-192. |
39 | 高冠道, 张爱勇, 张萌, 等. 新型仿生光催化剂HMS-FePcS催化降解孔雀绿的反应因素及动力学[J]. 催化学报, 2008, 29(4): 397-402. |
Gao G D, Zhang A Y, Zhang M, et al. Reaction factors and kinetics of degradation of malachite green with novel biomimetic photocatalyst HMS-FePcS[J]. Chinese Journal of Catalysis, 2008, 29(4): 397-402. | |
40 | 张钰,张瑞丰. 新型大孔仿生光催化剂Fe(Ⅲ)-taPc/SiO2的制备及其光催化降解性能[J]. 功能材料, 2013, 44(7): 1001-1005 |
Zhang Y, Zhang R F. Preparation and photocatalytic degradation properties of novel biommimetic photocatalyst Fe(Ⅲ)-taPc/SiO2 [J]. Journal of Functional Materials, 2013, 44(7): 1001-1005. | |
41 | Qian H L, Hou Q D, Yu G J, et al. Enhanced removal of dye from wastewater by Fenton process activated by core-shell NiCo2O4@FePc catalyst[J]. Journal of Cleaner Production, 2020, 273: 123028. |
42 | Guo Z, Chen B, Mu J, et al. Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2 [J]. Journal of Hazardous Materials, 2012, 219/220: 156-163. |
43 | Chu C Y, Li N, Xu T F, et al. Polymeric iron phthalocyanine/g-C3N4 composite catalyst by mechanical force enhanced stripping and recombination for solar-induced contaminant degradation and CO2 reduction[J]. Applied Surface Science, 2022, 592: 153308. |
44 | Chen X, Lu W Y, Xu T F, et al. Visible-light-assisted generation of high-valent iron-oxo species anchored axially on g-C3N4 for efficient degradation of organic pollutants[J]. Chemical Engineering Journal, 2017, 328: 853-861. |
45 | Norman M, Zoltowska-Aksamitowska S, Zgola-Grzeskowiak A, et al. Iron(Ⅲ) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A[J]. Journal of Hazardous Materials, 2018, 347: 78-88. |
46 | Huang Z F, Yao Y, Lu J, et al. The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2016, 301: 214-221. |
47 | Wang Z D, Zhu Z X, Wang G Q, et al. Iron (Ⅱ) phthalocyanine loaded tourmaline efficiently activates PMS to degrade pharmaceutical contaminants under solar light[J]. Environmental Technology, DOI: 10.1080/09593330.2022.2064236 . |
48 | Han Z B, Han X, Zhao X M, et al. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes[J]. Journal of Hazardous Materials, 2016, 320: 27-35. |
91 | Wu Y, Wu J B, Jiao L, et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing[J]. Analytical Chemistry, 2020, 92(4): 3373-3379. |
92 | Wang X, Lu X B, Wu L D, et al. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A[J]. Biosensors and Bioelectronics, 2015, 65: 295-301. |
93 | Zhang T, Wang L, Gao C W, et al. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol[J]. Nanotechnology, 2018, 29(7): 074003. |
94 | Zhao R, Wu X X, Gao Y X, et al. A unique bimetallic MOF derived carbon-MWCNTs hybrid structure for selective electrochemical determination of lead ion in aqueous solution[J]. Microchemical Journal, 2020, 158: 105271. |
95 | Li P H, Yang M, Li Y X, et al. Ultra-sensitive and selective detection of arsenic(Ⅲ) via electroanalysis over cobalt single-atom catalysts[J]. Analytical Chemistry, 2020, 92(8): 6128-6135. |
96 | Zong L P, Li J J, Shu G F, et al. Rational design of a highly dispersed Fe-N-C nanosheet with 1,10-phenanthroline-2,9-dicarboxylic acid as a preorganized ligand: boosted electrochemiluminescence detection of tetracycline[J]. Analytical Chemistry, 2022, 94(2): 1325-1332. |
97 | Zhang Y, Liu Z Y, Wang Y G, et al. Directly assembled electrochemical sensor by combining self-supported CoN nanoarray platform grown on carbon cloth with molecularly imprinted polymers for the detection of Tylosin[J]. Journal of Hazardous Materials, 2020, 398: 122778. |
49 | Ni D J, Zhang J F, Wang X Y, et al. Hydroxyl radical-dominated catalytic oxidation in neutral condition by axially coordinated iron phthalocyanine on mercapto-functionalized carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2017, 56(11): 2899-2907. |
50 | Li N, Wang Y, Wu C R, et al. Bioinspired catalytic generation of high-valent cobalt-oxo species by the axially coordinated CoPc on pyridine-functionalized MWCNTs for the elimination of organic contaminants[J]. Applied Surface Science, 2018, 434: 1112-1121. |
51 | Wu M H, Shi J, Ding C, et al. Binuclear cobalt phthalocyanine supported on manganese octahedral molecular sieve: high-efficiency catalyzer of peroxymonosulfate decomposition for degrading propranolol[J]. Science of the Total Environment, 2019, 686: 97-106. |
52 | Ebrahimian A, Zanjanchi M A, Noei H, et al. TiO2 nanoparticles containing sulphonated cobalt phthalocyanine: preparation, characterization and photocatalytic performance[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 484-494. |
53 | Li G L, Ma P, He Y, et al. Enzyme-nanowire mesocrystal hybrid materials with an extremely high biocatalytic activity[J]. Nano Letters, 2018, 18(9): 5919-5926. |
54 | Li N, Lu W Y, Pei K M, et al. Formation of high-valent cobalt-oxo phthalocyanine species in a cellulose matrix for eliminating organic pollutants[J]. Applied Catalysis B: Environmental, 2015, 163: 105-112. |
55 | Miao J, Zhu Y, Lang J Y, et al. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway[J]. ACS Catalysis, 2021, 11(15): 9569-9577. |
56 | Liu C H, Dai H L, Tan C Q, et al. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation[J]. Applied Catalysis B: Environmental, 2022, 310: 121326. |
57 | Zhao G, Li W C, Zhang H Y, et al. Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2022, 430: 132937. |
58 | Guo Z, Xie Y B, Xiao J D, et al. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. Journal of the American Chemical Society, 2019, 141(30): 12005-12010. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||