化工学报 ›› 2023, Vol. 74 ›› Issue (2): 653-665.DOI: 10.11949/0438-1157.20221560
张家庆1(), 蒋榕培2, 史伟康1, 武博翔1, 杨超3, 刘朝晖1()
收稿日期:
2022-12-02
修回日期:
2023-01-16
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
刘朝晖
作者简介:
张家庆(1998—),男,硕士研究生,jq_zhang@stu.xjtu.edu.cn
Jiaqing ZHANG1(), Rongpei JIANG2, Weikang SHI1, Boxiang WU1, Chao YANG3, Zhaohui LIU1()
Received:
2022-12-02
Revised:
2023-01-16
Online:
2023-02-05
Published:
2023-03-21
Contact:
Zhaohui LIU
摘要:
为探究温度变化及组分变化对液体火箭推进剂黏度的影响规律,以煤基/石油基火箭煤油两种燃料为研究对象,获取两种燃料宽广温度和压力范围内的黏度数据,构建两种燃料“黏度-温度-压力”数学模型,大多数模型偏差都在5%的实验扩展不确定度范围内,能够精确预测燃料黏度随温度及压力的变化。黏温系数及等压黏度变化率的大小可反映不同燃料的黏温特性,对比结果表明,煤基煤油和石油基煤油的黏温系数和等压黏度变化率的绝对值相近,受温度影响程度几乎相同。根据运动黏度梯度,提供两种火箭煤油雾化燃烧效果最佳的临界预热温度。以灰色关联理论方法分析火箭煤油五组分烃类物质与黏度及黏度变化率的相关性,研究影响火箭煤油黏度的敏感组分因素。结果表明:单环烷烃对低温火箭煤油黏度指标影响最大,双环烷烃对高温火箭煤油黏度指标影响最大。
中图分类号:
张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665.
Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene[J]. CIESC Journal, 2023, 74(2): 653-665.
发表年份 | 煤油种类 | 工况 | 测试点数 | 方法 | 不确定度 | 文献 |
---|---|---|---|---|---|---|
2009 | RP-1,RP-2 | 293~373 K 0.1 MPa | 18 | 开放式重力型毛细管黏度计 | — | [ |
2013 | RP-1,RP-2 | 263~323 K 0.083 MPa | 46 | 商业旋转同心圆筒式黏度计 | 0.28%~3.90% | [ |
2013 | RP-2 | 270~425 K 0.1~137 MPa | 94 | 振荡活塞黏度计 | 5% | [ |
2019 | RP-1 | 301~744 K 0.1~60 MPa | 74 | 毛细管法 | 2% | [ |
2020 | RP-2 | 298~573 K 5~100 MPa | 99 | 体积可变的滚球黏度计 | 4% | [ |
2022 | 煤基火箭煤油 | 299.6~678.8 K 0.3~40.4 MPa | 130 | 高温高压双毛细管黏度计 | 0.83%~4.91% | [ |
表1 火箭煤油黏度测量研究进展
Table 1 Research progress on viscosity measurement of rocket kerosene
发表年份 | 煤油种类 | 工况 | 测试点数 | 方法 | 不确定度 | 文献 |
---|---|---|---|---|---|---|
2009 | RP-1,RP-2 | 293~373 K 0.1 MPa | 18 | 开放式重力型毛细管黏度计 | — | [ |
2013 | RP-1,RP-2 | 263~323 K 0.083 MPa | 46 | 商业旋转同心圆筒式黏度计 | 0.28%~3.90% | [ |
2013 | RP-2 | 270~425 K 0.1~137 MPa | 94 | 振荡活塞黏度计 | 5% | [ |
2019 | RP-1 | 301~744 K 0.1~60 MPa | 74 | 毛细管法 | 2% | [ |
2020 | RP-2 | 298~573 K 5~100 MPa | 99 | 体积可变的滚球黏度计 | 4% | [ |
2022 | 煤基火箭煤油 | 299.6~678.8 K 0.3~40.4 MPa | 130 | 高温高压双毛细管黏度计 | 0.83%~4.91% | [ |
名称 | 来源 | 组分测试 | 平均分子式 | 平均分子量/(g/mol) | 临界温度/K | 临界压力/MPa |
---|---|---|---|---|---|---|
煤基煤油 | 西安航天动力试验技术研究所 | ASTM D2425① | C11.21H21.21② | 155.73 | 687.74 | 2.263 |
石油基煤油 | 北京航天试验技术研究所 | ASTM D2425 | C12.06H22.84② | 167.56 | 695.50 | 2.175 |
表 2 黏度测量所使用的燃料样品
Table 2 The fuel sample used for viscosity measurement
名称 | 来源 | 组分测试 | 平均分子式 | 平均分子量/(g/mol) | 临界温度/K | 临界压力/MPa |
---|---|---|---|---|---|---|
煤基煤油 | 西安航天动力试验技术研究所 | ASTM D2425① | C11.21H21.21② | 155.73 | 687.74 | 2.263 |
石油基煤油 | 北京航天试验技术研究所 | ASTM D2425 | C12.06H22.84② | 167.56 | 695.50 | 2.175 |
系数 | 煤基煤油 | 石油基煤油 |
---|---|---|
Z0 | 1.19071×102 | 2.25508×103 |
Z1 | -5.54439×103 | -9.65659×104 |
Z2 | 2.12645×10 | 3.90518×102 |
Z3 | 1.56939×10-2 | 3.95265×10-2 |
E0 | -1.00333×10-1 | 7.14612×10-4 |
E1 | 1.81220×10 | -2.01337 |
E2 | 3.68335×10-2 | -3.75306×10-3 |
A | -4.84325 | 3.61364 |
B | -2.69211×10-10 | 6.97318×10-11 |
AAD/% | 2.45 | 1.40 |
MAD/% | 8.67 | 5.82 |
Bias/% | -0.02 | 0.07 |
表3 293~673 K、0.3~40 MPa下模型的拟合参数及与火箭煤油实验值的偏差
Table 3 Fitting parameters of the model and deviations from experimental values of rocket kerosene at 293—673 K and 0.3—40 MPa
系数 | 煤基煤油 | 石油基煤油 |
---|---|---|
Z0 | 1.19071×102 | 2.25508×103 |
Z1 | -5.54439×103 | -9.65659×104 |
Z2 | 2.12645×10 | 3.90518×102 |
Z3 | 1.56939×10-2 | 3.95265×10-2 |
E0 | -1.00333×10-1 | 7.14612×10-4 |
E1 | 1.81220×10 | -2.01337 |
E2 | 3.68335×10-2 | -3.75306×10-3 |
A | -4.84325 | 3.61364 |
B | -2.69211×10-10 | 6.97318×10-11 |
AAD/% | 2.45 | 1.40 |
MAD/% | 8.67 | 5.82 |
Bias/% | -0.02 | 0.07 |
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6652 | 0.6824 | 0.6841 | 0.9417 | 0.6993 | 0.7345 |
单环烷烃 | 0.9651 | 1.0000 | 0.7811 | 0.8928 | 0.9018 | 0.9082 | ||
双环烷烃 | 0.8587 | 0.7077 | 0.7703 | 0.8987 | 0.8683 | 0.8207 | ||
三环烷烃 | 0.4571 | 0.6687 | 0.7919 | 0.6741 | 0.5268 | 0.6237 | ||
芳香烃 | 0.7169 | 0.8359 | 0.5452 | 0.5243 | 0.3384 | 0.5921 | ||
低温中压 (20 MPa) | 链烷烃 | 0.6564 | 0.6785 | 0.6933 | 0.9402 | 0.6772 | 0.7291 | |
单环烷烃 | 1.0000 | 0.9781 | 0.7828 | 0.8928 | 0.8582 | 0.9024 | ||
双环烷烃 | 0.8892 | 0.7255 | 0.7722 | 0.9043 | 0.9194 | 0.8421 | ||
三环烷烃 | 0.4723 | 0.6653 | 0.7933 | 0.6791 | 0.5519 | 0.6324 | ||
芳香烃 | 0.7051 | 0.8560 | 0.5510 | 0.5328 | 0.3382 | 0.5966 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6610 | 0.6757 | 0.7320 | 0.9544 | 0.6429 | 0.7332 | |
单环烷烃 | 1.0000 | 0.9428 | 0.7799 | 0.9089 | 0.7897 | 0.8843 | ||
双环烷烃 | 0.9357 | 0.7743 | 0.7701 | 0.9178 | 0.9955 | 0.8787 | ||
三环烷烃 | 0.5023 | 0.6635 | 0.7895 | 0.7005 | 0.6169 | 0.6546 | ||
芳香烃 | 0.7065 | 0.9122 | 0.5614 | 0.5538 | 0.3413 | 0.6151 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6097 | 0.6273 | 0.6318 | 0.8286 | 0.7041 | 0.6803 |
单环烷烃 | 0.9277 | 0.8815 | 0.8844 | 0.7909 | 0.9065 | 0.8782 | ||
双环烷烃 | 1.0000 | 0.7973 | 0.8706 | 0.9952 | 0.8812 | 0.9089 | ||
三环烷烃 | 0.4973 | 0.6159 | 0.8980 | 0.6161 | 0.5342 | 0.6323 | ||
芳香烃 | 0.6522 | 0.9614 | 0.5960 | 0.5776 | 0.3417 | 0.6258 | ||
高温中压 (20 MPa) | 链烷烃 | 0.5970 | 0.6301 | 0.6327 | 0.8351 | 0.6839 | 0.6758 | |
单环烷烃 | 0.8885 | 0.8790 | 0.8922 | 0.7977 | 0.8679 | 0.8650 | ||
双环烷烃 | 0.9985 | 0.8025 | 0.8785 | 1.0000 | 0.9222 | 0.9203 | ||
三环烷烃 | 0.5148 | 0.6188 | 0.9058 | 0.6233 | 0.5540 | 0.6433 | ||
芳香烃 | 0.6367 | 0.9644 | 0.6040 | 0.5803 | 0.3408 | 0.6252 | ||
高温高压 (40 MPa) | 链烷烃 | 0.5776 | 0.6533 | 0.6490 | 0.8387 | 0.6550 | 0.6747 | |
单环烷烃 | 0.8447 | 0.9234 | 0.8353 | 0.8011 | 0.8210 | 0.8451 | ||
双环烷烃 | 0.9430 | 0.7470 | 0.8233 | 1.0000 | 0.9461 | 0.8919 | ||
三环烷烃 | 0.5210 | 0.6412 | 0.8471 | 0.6259 | 0.5634 | 0.6397 | ||
芳香烃 | 0.6145 | 0.8848 | 0.5781 | 0.5668 | 0.3341 | 0.5957 |
表4 火箭煤油黏度灰色关联分析结果
Table 4 Grey correlation analysis results of rocket kerosene viscosity
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6652 | 0.6824 | 0.6841 | 0.9417 | 0.6993 | 0.7345 |
单环烷烃 | 0.9651 | 1.0000 | 0.7811 | 0.8928 | 0.9018 | 0.9082 | ||
双环烷烃 | 0.8587 | 0.7077 | 0.7703 | 0.8987 | 0.8683 | 0.8207 | ||
三环烷烃 | 0.4571 | 0.6687 | 0.7919 | 0.6741 | 0.5268 | 0.6237 | ||
芳香烃 | 0.7169 | 0.8359 | 0.5452 | 0.5243 | 0.3384 | 0.5921 | ||
低温中压 (20 MPa) | 链烷烃 | 0.6564 | 0.6785 | 0.6933 | 0.9402 | 0.6772 | 0.7291 | |
单环烷烃 | 1.0000 | 0.9781 | 0.7828 | 0.8928 | 0.8582 | 0.9024 | ||
双环烷烃 | 0.8892 | 0.7255 | 0.7722 | 0.9043 | 0.9194 | 0.8421 | ||
三环烷烃 | 0.4723 | 0.6653 | 0.7933 | 0.6791 | 0.5519 | 0.6324 | ||
芳香烃 | 0.7051 | 0.8560 | 0.5510 | 0.5328 | 0.3382 | 0.5966 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6610 | 0.6757 | 0.7320 | 0.9544 | 0.6429 | 0.7332 | |
单环烷烃 | 1.0000 | 0.9428 | 0.7799 | 0.9089 | 0.7897 | 0.8843 | ||
双环烷烃 | 0.9357 | 0.7743 | 0.7701 | 0.9178 | 0.9955 | 0.8787 | ||
三环烷烃 | 0.5023 | 0.6635 | 0.7895 | 0.7005 | 0.6169 | 0.6546 | ||
芳香烃 | 0.7065 | 0.9122 | 0.5614 | 0.5538 | 0.3413 | 0.6151 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6097 | 0.6273 | 0.6318 | 0.8286 | 0.7041 | 0.6803 |
单环烷烃 | 0.9277 | 0.8815 | 0.8844 | 0.7909 | 0.9065 | 0.8782 | ||
双环烷烃 | 1.0000 | 0.7973 | 0.8706 | 0.9952 | 0.8812 | 0.9089 | ||
三环烷烃 | 0.4973 | 0.6159 | 0.8980 | 0.6161 | 0.5342 | 0.6323 | ||
芳香烃 | 0.6522 | 0.9614 | 0.5960 | 0.5776 | 0.3417 | 0.6258 | ||
高温中压 (20 MPa) | 链烷烃 | 0.5970 | 0.6301 | 0.6327 | 0.8351 | 0.6839 | 0.6758 | |
单环烷烃 | 0.8885 | 0.8790 | 0.8922 | 0.7977 | 0.8679 | 0.8650 | ||
双环烷烃 | 0.9985 | 0.8025 | 0.8785 | 1.0000 | 0.9222 | 0.9203 | ||
三环烷烃 | 0.5148 | 0.6188 | 0.9058 | 0.6233 | 0.5540 | 0.6433 | ||
芳香烃 | 0.6367 | 0.9644 | 0.6040 | 0.5803 | 0.3408 | 0.6252 | ||
高温高压 (40 MPa) | 链烷烃 | 0.5776 | 0.6533 | 0.6490 | 0.8387 | 0.6550 | 0.6747 | |
单环烷烃 | 0.8447 | 0.9234 | 0.8353 | 0.8011 | 0.8210 | 0.8451 | ||
双环烷烃 | 0.9430 | 0.7470 | 0.8233 | 1.0000 | 0.9461 | 0.8919 | ||
三环烷烃 | 0.5210 | 0.6412 | 0.8471 | 0.6259 | 0.5634 | 0.6397 | ||
芳香烃 | 0.6145 | 0.8848 | 0.5781 | 0.5668 | 0.3341 | 0.5957 |
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6791 | 0.6910 | 0.7958 | 0.9178 | 0.6388 | 0.7445 |
单环烷烃 | 0.9642 | 0.9833 | 0.6943 | 0.8746 | 0.7883 | 0.8609 | ||
双环烷烃 | 0.8652 | 0.7268 | 0.6863 | 0.9234 | 1.0000 | 0.8403 | ||
三环烷烃 | 0.4758 | 0.6780 | 0.7021 | 0.6760 | 0.5976 | 0.6259 | ||
芳香烃 | 0.7286 | 0.8506 | 0.5122 | 0.5502 | 0.3361 | 0.5955 | ||
低温中压 (20 MPa) | 链烷烃 | 0.7037 | 0.7085 | 0.8143 | 0.9767 | 0.6474 | 0.7701 | |
单环烷烃 | 0.9896 | 1.0000 | 0.7233 | 0.9300 | 0.7931 | 0.8872 | ||
双环烷烃 | 0.8897 | 0.7577 | 0.7151 | 0.9214 | 0.9960 | 0.8560 | ||
三环烷烃 | 0.4930 | 0.6955 | 0.7315 | 0.7161 | 0.6313 | 0.6535 | ||
芳香烃 | 0.7546 | 0.8863 | 0.5342 | 0.5594 | 0.3457 | 0.6160 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6789 | 0.6623 | 0.8012 | 0.9723 | 0.5907 | 0.7411 | |
单环烷烃 | 1.0000 | 0.8902 | 0.7320 | 0.9286 | 0.7012 | 0.8504 | ||
双环烷烃 | 0.9261 | 0.8212 | 0.7240 | 0.8973 | 0.8441 | 0.8425 | ||
三环烷烃 | 0.5182 | 0.6515 | 0.7398 | 0.7253 | 0.7100 | 0.6689 | ||
芳香烃 | 0.7231 | 0.9636 | 0.5475 | 0.5635 | 0.3379 | 0.6271 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6947 | 0.7091 | 0.8808 | 0.7771 | 0.7138 | 0.7551 |
单环烷烃 | 0.9309 | 1.0000 | 0.6329 | 0.7436 | 0.9250 | 0.8465 | ||
双环烷烃 | 0.8319 | 0.6938 | 0.6257 | 0.9233 | 0.8659 | 0.7881 | ||
三环烷烃 | 0.4502 | 0.6944 | 0.6399 | 0.5859 | 0.5268 | 0.5794 | ||
芳香烃 | 0.7510 | 0.8161 | 0.4691 | 0.6042 | 0.3425 | 0.5965 | ||
高温中压 (20 MPa) | 链烷烃 | 0.7161 | 0.7492 | 0.8541 | 0.8188 | 0.7497 | 0.7776 | |
单环烷烃 | 0.8271 | 0.8633 | 0.6046 | 0.7786 | 0.9969 | 0.8141 | ||
双环烷烃 | 0.7419 | 0.6106 | 0.5976 | 1.0000 | 0.7590 | 0.7418 | ||
三环烷烃 | 0.4073 | 0.7314 | 0.6116 | 0.5961 | 0.4705 | 0.5634 | ||
芳香烃 | 0.7817 | 0.7126 | 0.4438 | 0.5407 | 0.3351 | 0.5628 | ||
高温高压 (40 MPa) | 链烷烃 | 0.6505 | 0.6896 | 0.7781 | 0.8363 | 0.6758 | 0.7261 | |
单环烷烃 | 1.0000 | 0.9893 | 0.7197 | 0.7996 | 0.8499 | 0.8717 | ||
双环烷烃 | 0.9370 | 0.7389 | 0.7110 | 0.9974 | 0.9581 | 0.8685 | ||
三环烷烃 | 0.4918 | 0.6764 | 0.7283 | 0.6275 | 0.5720 | 0.6192 | ||
芳香烃 | 0.6968 | 0.8704 | 0.5229 | 0.5905 | 0.3426 | 0.6046 |
表5 火箭煤油等压黏度变化率灰色关联分析结果
Table 5 Grey correlation analysis results of isobaric viscosity change rate of rocket kerosene
工况 | 组分 | ξi | ri | |||||
---|---|---|---|---|---|---|---|---|
煤基 | 石油基 | RP-2A | RP-2B | RP-1 | ||||
低温 (303.2 K) | 低温低压 (10 MPa) | 链烷烃 | 0.6791 | 0.6910 | 0.7958 | 0.9178 | 0.6388 | 0.7445 |
单环烷烃 | 0.9642 | 0.9833 | 0.6943 | 0.8746 | 0.7883 | 0.8609 | ||
双环烷烃 | 0.8652 | 0.7268 | 0.6863 | 0.9234 | 1.0000 | 0.8403 | ||
三环烷烃 | 0.4758 | 0.6780 | 0.7021 | 0.6760 | 0.5976 | 0.6259 | ||
芳香烃 | 0.7286 | 0.8506 | 0.5122 | 0.5502 | 0.3361 | 0.5955 | ||
低温中压 (20 MPa) | 链烷烃 | 0.7037 | 0.7085 | 0.8143 | 0.9767 | 0.6474 | 0.7701 | |
单环烷烃 | 0.9896 | 1.0000 | 0.7233 | 0.9300 | 0.7931 | 0.8872 | ||
双环烷烃 | 0.8897 | 0.7577 | 0.7151 | 0.9214 | 0.9960 | 0.8560 | ||
三环烷烃 | 0.4930 | 0.6955 | 0.7315 | 0.7161 | 0.6313 | 0.6535 | ||
芳香烃 | 0.7546 | 0.8863 | 0.5342 | 0.5594 | 0.3457 | 0.6160 | ||
低温高压 (40 MPa) | 链烷烃 | 0.6789 | 0.6623 | 0.8012 | 0.9723 | 0.5907 | 0.7411 | |
单环烷烃 | 1.0000 | 0.8902 | 0.7320 | 0.9286 | 0.7012 | 0.8504 | ||
双环烷烃 | 0.9261 | 0.8212 | 0.7240 | 0.8973 | 0.8441 | 0.8425 | ||
三环烷烃 | 0.5182 | 0.6515 | 0.7398 | 0.7253 | 0.7100 | 0.6689 | ||
芳香烃 | 0.7231 | 0.9636 | 0.5475 | 0.5635 | 0.3379 | 0.6271 | ||
高温 (573.2 K) | 高温低压 (10 MPa) | 链烷烃 | 0.6947 | 0.7091 | 0.8808 | 0.7771 | 0.7138 | 0.7551 |
单环烷烃 | 0.9309 | 1.0000 | 0.6329 | 0.7436 | 0.9250 | 0.8465 | ||
双环烷烃 | 0.8319 | 0.6938 | 0.6257 | 0.9233 | 0.8659 | 0.7881 | ||
三环烷烃 | 0.4502 | 0.6944 | 0.6399 | 0.5859 | 0.5268 | 0.5794 | ||
芳香烃 | 0.7510 | 0.8161 | 0.4691 | 0.6042 | 0.3425 | 0.5965 | ||
高温中压 (20 MPa) | 链烷烃 | 0.7161 | 0.7492 | 0.8541 | 0.8188 | 0.7497 | 0.7776 | |
单环烷烃 | 0.8271 | 0.8633 | 0.6046 | 0.7786 | 0.9969 | 0.8141 | ||
双环烷烃 | 0.7419 | 0.6106 | 0.5976 | 1.0000 | 0.7590 | 0.7418 | ||
三环烷烃 | 0.4073 | 0.7314 | 0.6116 | 0.5961 | 0.4705 | 0.5634 | ||
芳香烃 | 0.7817 | 0.7126 | 0.4438 | 0.5407 | 0.3351 | 0.5628 | ||
高温高压 (40 MPa) | 链烷烃 | 0.6505 | 0.6896 | 0.7781 | 0.8363 | 0.6758 | 0.7261 | |
单环烷烃 | 1.0000 | 0.9893 | 0.7197 | 0.7996 | 0.8499 | 0.8717 | ||
双环烷烃 | 0.9370 | 0.7389 | 0.7110 | 0.9974 | 0.9581 | 0.8685 | ||
三环烷烃 | 0.4918 | 0.6764 | 0.7283 | 0.6275 | 0.5720 | 0.6192 | ||
芳香烃 | 0.6968 | 0.8704 | 0.5229 | 0.5905 | 0.3426 | 0.6046 |
1 | 吴燕生. 创新突破 为高质量发展贡献航天力量[J]. 求是, 2022(20): 48-52. |
Wu Y S. Innovation and breakthrough contribute aerospace power to high-quality development[J]. QiuShi, 2022(20): 48-52. | |
2 | 陈建华, 曹晨, 杨永强, 等. “长征五号”火箭液氧煤油发动机总体技术[J]. 深空探测学报, 2021, 8(4): 354-361. |
Chen J H, Cao C, Yang Y Q, et al. General technical review of Long March 5 liquid oxygen kerosene engine[J]. Journal of Deep Space Exploration, 2021, 8(4):354-361. | |
3 | 李斌, 陈晖, 马冬英, 等. 500 tf级液氧煤油高压补燃发动机研制进展[J]. 火箭推进, 2022, 48(2): 1-10. |
Li B, Chen H, Ma D Y, et al. Development of 500 tf class high pressure stage combustion LOX/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 1-10. | |
4 | Cheng X, Bi Q C, Lan H P, et al. Flow and heat transfer characteristics of coal-based rocket kerosene in mini-tube with ultra-high parameters[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106099. |
5 | Haeseler D, Mäding C, Götz A, et al. Recent developments for future launch vehicle LOX/HC rocket engines[C]// 6th International Symposium Propulsion for Space Transportation of the st Century. Versailles, France, 2002. |
6 | Cho W K, Seol W S, Son M, et al. Development of preliminary design program for combustor of regenerative cooled liquid rocket engine[J]. Journal of Thermal Science, 2011, 20(5): 467-473. |
7 | Son M, Ko S, Koo J. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines[J]. Journal of Thermal Science, 2014, 23(3): 259-268. |
8 | Baled H O, Enick R M, Mallepally R R, et al. Viscosity measurements of rocket propellant RP-2 over wide ranges of temperature and pressure[J]. Journal of Chemical & Engineering Data, 2020, 65(6): 3221-3229. |
9 | Outcalt S L, Laesecke A, Brumback K J. Thermophysical properties measurements of rocket propellants RP-1 and RP-2[J]. Journal of Propulsion and Power, 2009, 25(5): 1032-1040. |
10 | Fortin T J, Bruno T J. Assessment of the thermophysical properties of thermally stressed RP-1 and RP-2[J]. Energy & Fuels, 2013, 27(5): 2506-2514. |
11 | Laesecke A, Cousins D S. Wide-ranging viscosity measurements of rocket propellant RP-2[J]. Journal of Propulsion and Power, 2013, 29(6): 1323-1327. |
12 | Abdulagatov I M, Akhmedova-Azizova L A. Viscosity of rocket propellant (RP-1) at high temperatures and high pressures[J]. Fuel, 2019, 235: 703-714. |
13 | Zhang J Q, Yang C, Liu Z H, et al. Measurements and predictive models for the viscosity of coal-based kerosene at temperatures up to 673 K and pressures up to 40 MPa[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2242-2256. |
14 | 刘思峰, 杨英杰. 灰色系统研究进展(2004—2014)[J]. 南京航空航天大学学报, 2015, 47(1): 1-18. |
Liu S F, Yang Y J. Advances in grey system research(2004—2014)[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(1): 1-18. | |
15 | Yang Z Q, Bi Q C, Feng S. Viscosity measurement of endothermic fuels at temperatures from 303 K to 673 K and pressures up to 5.00 MPa[J]. Journal of Chemical & Engineering Data, 2016, 61(10): 3472-3480. |
16 | 张家庆, 刘朝晖, 李宇, 等. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161. |
Zhang J Q, Liu Z H, Li Y, et al. Viscosity measurements and prediction model construction for liquid JP-10 at high-temperature conditions[J]. CIESC Journal, 2022, 73(1): 153-161. | |
17 | Lemmon E W, Huber M L, McLinden M O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1[DB]. Gaithersburg, MD: National Institute of Standards and Technology, 2013. |
18 | ASTM International. Test method for hydrocarbon types in middle distillates by mass spectrometry: [S]. America: American Society for Testing and Materials, 2019. |
19 | Bruno T J, Smith B L. Improvements in the measurement of distillation curves(2): Application to aerospace/aviation fuels RP-1 and S-8[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4381-4388. |
20 | Rocha W F de C, Sheen D A. Determination of physicochemical properties of petroleum derivatives and biodiesel using GC/MS and chemometric methods with uncertainty estimation[J]. Fuel, 2019, 243: 413-422. |
21 | Glasstone S, Laidler K, Eyring E. Theory of Rate Processes[M]. New York: McGraw-Hill, 1941. |
22 | Tyrrell H J V, Harris K R. Theoretical interpretations of diffusion coefficients[M]//Diffusion in Liquids. London: Butterworths, 1984:258-310. |
23 | Wang S, Sui M, Luo H, et al. An optimized model for predicting kinematic viscosities of biodiesel fuels [J]. Fuel Cells, 2021, 21(1): 39-44. |
24 | Luo S B, Xu D Q, Song J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering, 2021, 190: 116754. |
25 | Knab O, Fröhlich A, Wennerberg D, et al. Advanced cooling circuit layout for the VINCI expander cycle thrust chamber[C]// 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2002: 4005 |
26 | Negishi H, Daimon Y, Kawashima H. Flowfield and heat transfer characteristics in the LE-X expander bleed cycle combustion chamber[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2014: 4010. |
27 | Urbano A, Nasuti F. Parametric analysis of cooling properties of candidate expander-cycle fuels[J]. Journal of Propulsion and Power, 2014, 30(1): 153-163. |
28 | 胡松山, 王浩, 覃润浦, 等. 沥青四组分与不同加载模式下橡胶沥青零剪切黏度相关性[J]. 复合材料学报, 2018, 35(4): 999-1013. |
Hu S S, Wang H, Qin R P, et al. Correlation between asphalt four components and asphalt rubber zero shear viscosity under different loading modes[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 999-1013. | |
29 | 刘文静, 靳岚, 张金刚, 等. 基于灰色关联法与FAHP的磨煤机能耗分析[J]. 甘肃科学学报, 2022, 34(5): 12-17. |
Liu W J, Jin L, Zhang J G, et al. Analysis of energy consumption of coal mill by grey relational method and FAHP[J]. Journal of Gansu Sciences, 2022, 34(5): 12-17. | |
30 | Akhmedova-Azizova L A, Abdulagatov I M, Bruno T J. Effect of RP-1 compositional variability on thermal conductivity at high temperatures and high pressures[J]. Energy & Fuels, 2009, 23(9): 4522-4528. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[4] | 雷博雯, 吴建华, 吴启航. R290低压比热泵高补气过热度循环研究[J]. 化工学报, 2023, 74(5): 1875-1883. |
[5] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[6] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[7] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[8] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[9] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[10] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[11] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[12] | 方辉煌, 程金星, 罗宇, 陈崇启, 周晨, 江莉龙. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814. |
[13] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[14] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[15] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 141
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 345
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||