化工学报 ›› 2023, Vol. 74 ›› Issue (2): 924-932.DOI: 10.11949/0438-1157.20221001
收稿日期:
2022-08-10
修回日期:
2022-09-30
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
万金涛,范宏
作者简介:
郑杰元(1995—),男,博士研究生,jieyuanzheng@zju.edu.cn
基金资助:
Jieyuan ZHENG1(), Xianwei ZHANG2, Jintao WAN3(
), Hong FAN1(
)
Received:
2022-08-10
Revised:
2022-09-30
Online:
2023-02-05
Published:
2023-03-21
Contact:
Jintao WAN, Hong FAN
摘要:
利用丁香酚环氧和环四硅氧烷硅氢加成得到新型生物基环氧树脂D4EUEP,通过核磁共振氢谱和飞行时间质谱表征其准确结构。使用非等温DSC对D4EUEP/33DDS固化体系进行分析,采用双参数自催化模型和Málek判据建立了该体系固化动力学模型。模型计算结果与实验结果相关系数大于99%,证明该模型可以较好地描述D4EUEP/33DDS体系的固化过程。通过AICM方法研究了体系的有效活化能与转化率之间的关系,揭示了微观反应机理的变化,并通过Vyazovkin法对D4EUEP/33DDS体系进行了等温固化预测。
中图分类号:
郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932.
Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin[J]. CIESC Journal, 2023, 74(2): 924-932.
β/(℃/min) | ΔH/(J/g) | Ti/℃ | Tp/℃ |
---|---|---|---|
3.0 | 240.5 | 135.2 | 162.6 |
4.5 | 241.8 | 139.7 | 175.3 |
6.7 | 244.6 | 145.8 | 186.3 |
10.0 | 246.9 | 151.4 | 198.6 |
表1 固化反应特征参数
Table 1 Characteristic parameters for curing systems
β/(℃/min) | ΔH/(J/g) | Ti/℃ | Tp/℃ |
---|---|---|---|
3.0 | 240.5 | 135.2 | 162.6 |
4.5 | 241.8 | 139.7 | 175.3 |
6.7 | 244.6 | 145.8 | 186.3 |
10.0 | 246.9 | 151.4 | 198.6 |
β/(℃/min) | αp | αM | α |
---|---|---|---|
3.0 | 0.367 | 0.233 | 0.398 |
4.5 | 0.377 | 0.222 | 0.400 |
6.7 | 0.385 | 0.237 | 0.424 |
10.0 | 0.409 | 0.231 | 0.442 |
表2 不同升温速率下转化率特征峰值
Table 2 Characteristic peak conversion values αp, αM and αp∞ at various heating rates
β/(℃/min) | αp | αM | α |
---|---|---|---|
3.0 | 0.367 | 0.233 | 0.398 |
4.5 | 0.377 | 0.222 | 0.400 |
6.7 | 0.385 | 0.237 | 0.424 |
10.0 | 0.409 | 0.231 | 0.442 |
1 | Paluvai N R, Mohanty S, Nayak S K. Synthesis and modifications of epoxy resins and their composites: a review[J]. Polymer-Plastics Technology and Engineering, 2014, 53(16): 1723-1758. |
2 | 孙曼灵. 环氧树脂应用原理与技术[M]. 北京: 机械工业出版社, 2002. |
Sun M L. Principle and Technology of Epoxy Resin Application[M]. Beijing: China Machine Press, 2002. | |
3 | 谭家顶, 程珏, 郭晶, 等. 几种胺类固化剂对环氧树脂固化行为及固化物性能的影响[J]. 化工学报, 2011, 62(6): 1723-1729. |
Tan J D, Cheng J, Guo J, et al. Effect of amine curing agents on curing behavior of epoxy resin and properties of cured compounds[J]. CIESC Journal, 2011, 62(6): 1723-1729. | |
4 | Jin F L, Li X, Park S J. Synthesis and application of epoxy resins: a review[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 1-11. |
5 | Zhao S, Huang X N, Whelton A J, et al. Renewable epoxy thermosets from fully lignin-derived triphenols[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7600-7608. |
6 | Yan R, Yang D L, Zhang N N, et al. Performance of UV curable lignin based epoxy acrylate coatings[J]. Progress in Organic Coatings, 2018, 116: 83-89. |
7 | Fang Z, Nikafshar S, Hegg E L, et al. Biobased divanillin as a precursor for formulating biobased epoxy resin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9095-9103. |
8 | Fache M, Viola A, Auvergne R, et al. Biobased epoxy thermosets from vanillin-derived oligomers[J]. European Polymer Journal, 2015, 68: 526-535. |
9 | Chen C H, Tung S H, Jeng R J, et al. A facile strategy to achieve fully bio-based epoxy thermosets from eugenol[J]. Green Chemistry, 2019, 21(16): 4475-4488. |
10 | Kumar B, Agumba D O, Pham D H, et al. Recent progress in bio-based eugenol resins: from synthetic strategies to structural properties and coating applications[J]. Journal of Applied Polymer Science, 2022, 139(2): 51532. |
11 | Atta A M, Al-Hodan H A, Hameed R S A, et al. Preparation of green cardanol-based epoxy and hardener as primer coatings for petroleum and gas steel in marine environment[J]. Progress in Organic Coatings, 2017, 111: 283-293. |
12 | Aggarwal L K, Thapliyal P C, Karade S R. Anticorrosive properties of the epoxy-cardanol resin based paints[J]. Progress in Organic Coatings, 2007, 59(1): 76-80. |
13 | Li C, Fan H, Aziz T, et al. Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8856-8867. |
14 | Fischer M, Tran C D. Evidence for kinetic inhomogeneity in the curing of epoxy using the near-infrared multispectral imaging technique[J]. Analytical Chemistry, 1999, 71(5): 953-959. |
15 | Xu L, Fu J H, Schlup J R. In situ near-infrared spectroscopic investigation of epoxy resin-aromatic amine cure mechanisms[J]. Journal of the American Chemical Society, 1994, 116(7): 2821-2826. |
16 | 张竞, 黄培. 环氧树脂固化动力学研究进展[J]. 材料导报, 2009, 23(13): 58-61, 81. |
Zhang J, Huang P. Research advances in epoxy resin curing kinetics[J]. Materials Review, 2009, 23(13): 58-61, 81. | |
17 | Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta, 1971, 3(1): 1-12. |
18 | Málek J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta, 1992, 200: 257-269. |
19 | Barton J M. The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions[M]//Epoxy Resins and Composites I. Heidelberg: Springer Berlin, 1985: 111-154. |
20 | Fernández R, d'Arlas B F, Oyanguren P A, et al. Kinetic studies of the polymerization of an epoxy resin modified with rhodamine B[J]. Thermochimica Acta, 2009, 493(1/2): 6-13. |
21 | Yao L, Deng J, Qu B J, et al. Cure kinetics of DGEBA with hyperbranched poly(3-hydroxyphenyl) phosphate as curing agent studied by non-isothermal DSC[J]. Chemical Research in Chinese Universities, 2006, 22(1): 118-122. |
22 | Wan J T, Li B G, Fan H, et al. Nonisothermal reaction, thermal stability and dynamic mechanical properties of epoxy system with novel nonlinear multifunctional polyamine hardener[J]. Thermochimica Acta, 2010, 511(1/2): 51-58. |
23 | Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. |
24 | Senum G I, Yang R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis, 1977, 11(3): 445-447. |
25 | Kamon T, Furukawa H. Curing mechanisms and mechanical properties of cured epoxy resins[M]//Epoxy Resins and Composites Ⅳ. Heidelberg: Springer Berlin, 1986: 173-202. |
26 | Lee J Y, Shim M J, Kim S W. Effect of modified rubber compound on the cure kinetics of DGEBA/MDA system by Kissinger and isoconversional methods[J]. Thermochimica Acta, 2001, 371(1/2): 45-51. |
27 | Zhang Y X, Vyazovkin S. Curing of diglycidyl ether of 4,4'-bisphenol P with nitro derivatives of amine compounds, 3[J]. Macromolecular Chemistry and Physics, 2005, 206(18): 1840-1846. |
28 | Yang Y, Li W Z, Chen K M, et al. Epoxy terminated polysiloxane blended with diglycidyl ether of bisphenol-A(part 1): Curing behavior and compatibility[J]. Journal of Applied Polymer Science, 2018, 135(48): 46891. |
29 | Gallagher P K. Handbook of Thermal Analysis and Calorimetry[M]. Elsevier B.V. and Science Press, 1998. |
30 | Vyazovkin S. Isoconversional Kinetics of Thermally Stimulated Processes[M]. Cham: Springer International Publishing, 2015. |
31 | Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computaional Chemistry, 2001, 22(2): 178-183. |
32 | Vyazovkin S. A unified approach to kinetic processing of nonisothermal data[J]. International Journal of Chemical Kinetics, 1996, 28(2): 95-101. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[2] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[5] | 赵婧, 顾程文, 蹇锡高, 翁志焕. 厚朴酚基环氧树脂防腐涂层的制备及性能评价[J]. 化工学报, 2023, 74(7): 3010-3017. |
[6] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[7] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[8] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[9] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[10] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[11] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[12] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[13] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[14] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[15] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||