化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1764-1771.DOI: 10.11949/0438-1157.20221380
收稿日期:
2022-10-20
修回日期:
2023-03-05
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
玄伟伟
作者简介:
张永泉(1997—),男,硕士研究生,g20208251@xs.ustb.edu.cn
基金资助:
Yongquan ZHANG(), Weiwei XUAN()
Received:
2022-10-20
Revised:
2023-03-05
Online:
2023-04-05
Published:
2023-06-02
Contact:
Weiwei XUAN
摘要:
熔渣在高温液态炉侧壁的流动情况强烈影响高温炉的平稳运行。熔体中碱性金属对熔融灰渣的流动特性有着重要影响,且不同碱性组分对熔体的特性影响不同。通过FactSage热力学计算和分子动力学模拟,研究在SiO2和Al2O3含量不变的情况下,Na2O、K2O和FeO、CaO、MgO的相对比例对煤灰熔体黏度和微观结构的影响。研究发现,随着M2O/MO的增加,熔体中的高聚合度单元Q4占比增大,同时桥氧(BO)增加,非桥氧(NBO)减少,使熔体的聚合度增大。碱性氧化物对熔体的电荷补偿能力由大到小依次为K2O>Na2O>MO。当碱金属氧化物(Na2O、K2O)替换FeO、CaO、MgO后部分M+脱离NBO充当电荷补偿离子,生成BO;脱离的M+解聚用于维持电荷平衡的三簇氧(TO),生成BO。这种结构上的变化增大了熔体的黏度。
中图分类号:
张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771.
Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag[J]. CIESC Journal, 2023, 74(4): 1764-1771.
样品 | 含量/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | FeO | CaO | MgO | Na2O | K2O | M2O/MO | Tliq/K | |
S1 | 48.00 | 30.00 | 5.00 | 15.00 | 2.00 | 0.00 | 0.00 | 0.00 | 1744.80 |
S2 | 48.00 | 30.00 | 4.09 | 12.27 | 1.64 | 4.00 | 0.00 | 0.22 | 1701.53 |
S3 | 48.00 | 30.00 | 3.18 | 9.55 | 1.27 | 8.00 | 0.00 | 0.57 | 1645.07 |
S4 | 48.00 | 30.00 | 2.27 | 6.82 | 1.19 | 12.00 | 0.00 | 1.20 | 1556.46 |
S5 | 48.00 | 30.00 | 4.09 | 12.27 | 1.64 | 0.00 | 4.00 | 0.22 | 1727.32 |
S6 | 48.00 | 30.00 | 3.18 | 9.55 | 1.27 | 0.00 | 8.00 | 0.57 | 1693.18 |
S7 | 48.00 | 30.00 | 2.27 | 6.82 | 0.91 | 0.00 | 12.00 | 1.20 | 1667.59 |
S8 | 48.00 | 30.00 | 2.27 | 6.82 | 0.91 | 6.00 | 6.00 | 1.20 | 1590.18 |
表1 煤灰的化学组分
Table 1 Chemical composition of coal ash
样品 | 含量/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | FeO | CaO | MgO | Na2O | K2O | M2O/MO | Tliq/K | |
S1 | 48.00 | 30.00 | 5.00 | 15.00 | 2.00 | 0.00 | 0.00 | 0.00 | 1744.80 |
S2 | 48.00 | 30.00 | 4.09 | 12.27 | 1.64 | 4.00 | 0.00 | 0.22 | 1701.53 |
S3 | 48.00 | 30.00 | 3.18 | 9.55 | 1.27 | 8.00 | 0.00 | 0.57 | 1645.07 |
S4 | 48.00 | 30.00 | 2.27 | 6.82 | 1.19 | 12.00 | 0.00 | 1.20 | 1556.46 |
S5 | 48.00 | 30.00 | 4.09 | 12.27 | 1.64 | 0.00 | 4.00 | 0.22 | 1727.32 |
S6 | 48.00 | 30.00 | 3.18 | 9.55 | 1.27 | 0.00 | 8.00 | 0.57 | 1693.18 |
S7 | 48.00 | 30.00 | 2.27 | 6.82 | 0.91 | 0.00 | 12.00 | 1.20 | 1667.59 |
S8 | 48.00 | 30.00 | 2.27 | 6.82 | 0.91 | 6.00 | 6.00 | 1.20 | 1590.18 |
原子个数 | 密度/(g/cm3) | 盒子长度/Å | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Si | Al | Fe | Ca | Mg | Na | K | O | 总数 | ||
1722 | 1268 | 150 | 576 | 107 | 0 | 0 | 6179 | 10002 | 2.75 | 50.66 |
1702 | 1254 | 122 | 466 | 87 | 275 | 0 | 6098 | 10004 | 2.69 | 50.84 |
1683 | 1240 | 94 | 359 | 66 | 544 | 0 | 6017 | 10003 | 2.64 | 51.00 |
1665 | 1226 | 66 | 253 | 47 | 807 | 0 | 5939 | 10003 | 2.64 | 51.00 |
1727 | 1272 | 124 | 473 | 88 | 0 | 183 | 6139 | 10006 | 2.68 | 51.14 |
1732 | 1276 | 96 | 369 | 68 | 0 | 368 | 6095 | 10004 | 2.62 | 51.61 |
1736 | 1280 | 70 | 264 | 49 | 0 | 554 | 6052 | 10005 | 2.55 | 52.09 |
1700 | 1252 | 68 | 259 | 48 | 412 | 271 | 5995 | 10005 | 2.57 | 51.62 |
表2 MD中原子个数
Table 2 Number of atoms in MD
原子个数 | 密度/(g/cm3) | 盒子长度/Å | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Si | Al | Fe | Ca | Mg | Na | K | O | 总数 | ||
1722 | 1268 | 150 | 576 | 107 | 0 | 0 | 6179 | 10002 | 2.75 | 50.66 |
1702 | 1254 | 122 | 466 | 87 | 275 | 0 | 6098 | 10004 | 2.69 | 50.84 |
1683 | 1240 | 94 | 359 | 66 | 544 | 0 | 6017 | 10003 | 2.64 | 51.00 |
1665 | 1226 | 66 | 253 | 47 | 807 | 0 | 5939 | 10003 | 2.64 | 51.00 |
1727 | 1272 | 124 | 473 | 88 | 0 | 183 | 6139 | 10006 | 2.68 | 51.14 |
1732 | 1276 | 96 | 369 | 68 | 0 | 368 | 6095 | 10004 | 2.62 | 51.61 |
1736 | 1280 | 70 | 264 | 49 | 0 | 554 | 6052 | 10005 | 2.55 | 52.09 |
1700 | 1252 | 68 | 259 | 48 | 412 | 271 | 5995 | 10005 | 2.57 | 51.62 |
原子对 | 电荷 | Aij /eV | ρij /Å | Cij /(eV•Å6) |
---|---|---|---|---|
Si—O | 1.89 | 50307.43 | 0.161 | 46.3 |
Al—O | 1.4175 | 28539.14 | 0.172 | 34.58 |
Fe—O | 0.945 | 13033.26 | 0.19 | 0 |
Ca—O | 0.945 | 155671.6 | 0.178 | 42.26 |
Mg—O | 0.945 | 32653.47 | 0.178 | 27.28 |
Na—O | 0.4725 | 120307.1 | 0.17 | 0 |
K—O | 0.4725 | 2284.8 | 0.29 | 0 |
O—O | -0.945 | 9023.03 | 0.265 | 85.09 |
表3 BMH势参数[33]
Table 3 BMH potential parameters[33]
原子对 | 电荷 | Aij /eV | ρij /Å | Cij /(eV•Å6) |
---|---|---|---|---|
Si—O | 1.89 | 50307.43 | 0.161 | 46.3 |
Al—O | 1.4175 | 28539.14 | 0.172 | 34.58 |
Fe—O | 0.945 | 13033.26 | 0.19 | 0 |
Ca—O | 0.945 | 155671.6 | 0.178 | 42.26 |
Mg—O | 0.945 | 32653.47 | 0.178 | 27.28 |
Na—O | 0.4725 | 120307.1 | 0.17 | 0 |
K—O | 0.4725 | 2284.8 | 0.29 | 0 |
O—O | -0.945 | 9023.03 | 0.265 | 85.09 |
1 | Hu S H, Ni Y G, Yin Q, et al. Research on element migration and ash deposition characteristics of high-alkali coal in horizontal liquid slagging cyclone furnace[J]. Fuel, 2022, 308: 121962. |
2 | Heberlein S, Chan W P, Veksha A, et al. High temperature slagging gasification of municipal solid waste with biomass charcoal as a greener auxiliary fuel[J]. Journal of Hazardous Materials, 2022, 423: 127057. |
3 | Oh M S, Brooker D D, de Paz E F, et al. Effect of crystalline phase formation on coal slag viscosity[J]. Fuel Processing Technology, 1995, 44(1/2/3): 191-199. |
4 | Yuan H P, Liang Q F, Gong X. Crystallization of coal ash slags at high temperatures and effects on the viscosity[J]. Energy & Fuels, 2012, 26(6): 3717-3722. |
5 | Mills K C, Hayashi M, Wang L J, et al. The structure and properties of silicate slags[M]//Treatise on Process Metallurgy. Amsterdam: Elsevier, 2014: 149-286. |
6 | Sukenaga S, Saito N, Kawakami K, et al. Viscosities of CaO-SiO2-Al2O3-(R2O or RO) melts[J]. ISIJ International, 2006, 46(3): 352-358. |
7 | Kim H, Kim W H, Park J H, et al. A study on the effect of Na2O on the viscosity for ironmaking slags[J]. Steel Research International, 2010, 81(1): 17-24. |
8 | Kim W H, Sohn I, Min D J. A study on the viscous behaviour with K2O additions in the CaO-SiO2-Al2O3-MgO-K2O quinary slag system[J]. Steel Research International, 2010, 81(9): 735-741. |
9 | Zhang G H, Chou K C. Measuring and modeling viscosity of CaO-Al2O3-SiO2 (-K2O) melt[J]. Metallurgical and Materials Transactions B, 2012, 43(4): 841-848. |
10 | Higo T, Sukenaga S, Kanehashi K, et al. Effect of potassium oxide addition on viscosity of calcium aluminosilicate melts at 1673—1873 K[J]. ISIJ International, 2014, 54(9): 2039-2044. |
11 | Chang Z Y, Jiao K X, Ning X J, et al. Novel approach to studying influences of Na2O and K2O additions on viscosity and thermodynamic properties of BF slags[J]. Metallurgical and Materials Transactions B, 2019, 50(3): 1399-1406. |
12 | Ge Z F, Kong L X, Bai J, et al. Effect of CaO/Na2O on slag viscosity behavior under entrained flow gasification conditions[J]. Fuel Processing Technology, 2018, 181: 352-360. |
13 | Wang W L, Shao H Q, Zhou L J, et al. Rheological behavior of the CaO-Al2O3-based mold fluxes with different Na2O contents[J]. Ceramics International, 2020, 46(17): 26880-26887. |
14 | Vargas S, Frandsen F J, Dam-Johansen K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Progress in Energy and Combustion Science, 2001, 27(3): 237-429. |
15 | Nowok J W. Viscosity and phase transformation in coal ash slags near and below the temperature of critical viscosity[J]. Energy & Fuels, 1994, 8(6): 1324-1336. |
16 | 倪怀玮. 硅酸盐熔体的物理化学性质研究进展及其应用[J]. 科学通报, 2013, 58(10): 865-890. |
Ni H W. Advances and application in physicochemical properties of silicate melts[J]. Chinese Science Bulletin, 2013, 58(10): 865-890. | |
17 | 吴永全, 尤静林, 蒋国昌. 铝酸钙熔体结构的分子动力学模拟研究[J]. 无机材料学报, 2003, 18(3): 619-626. |
Wu Y Q, You J L, Jiang G C. Molecular dynamics study of the structure of calcium aluminate melts[J]. Journal of Inorganic Materials, 2003, 18(3): 619-626. | |
18 | Zheng K, Zhang Z T, Yang F H, et al. Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios[J]. ISIJ International, 2012, 52(3): 342-349. |
19 | 徐利莹, 王秀丽, 吴永全, 等. 铝硅酸钙熔体中氧原子的配位性质及动力学[J]. 硅酸盐学报, 2006, 34(9): 1117-1123. |
Xu L Y, Wang X L, Wu Y Q, et al. Coordination and dynamics of oxygen in calcium aluminosilicate melts[J]. Journal of the Chinese Ceramic Society, 2006, 34(9): 1117-1123. | |
20 | Jiang C H, Zhang H X, Xiong Z X, et al. Molecular dynamics investigations on the effect of Na2O on the structure and properties of blast furnace slag under different basicity conditions[J]. Journal of Molecular Liquids, 2020, 299: 112195. |
21 | Gao L F, Liu X C, Bai J, et al. Structure and flow properties of coal ash slag using ring statistics and molecular dynamics simulation: role of CaO/Na2O in SiO2-Al2O3-CaO-Na2O[J]. Chemical Engineering Science, 2021, 231: 116285. |
22 | 马志斌, 白宗庆, 白进, 等. 高温弱还原气氛下高硅铝比煤灰变化行为的研究[J]. 燃料化学学报, 2012, 40(3): 279-285. |
Ma Z B, Bai Z Q, Bai J, et al. Evolution of coal ash with high Si/Al ratio under reducing atmosphere at high temperature[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 279-285. | |
23 | Bai J, Li W, Li B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4/5): 583-591. |
24 | 付子文, 王长安, 车得福, 等. 成灰温度对准东煤灰理化特性影响的实验研究[J]. 工程热物理学报, 2014, 35(3): 609-613. |
Fu Z W, Wang C A, Che D F, et al. Experimental study on the effect of ashing temperature on physicochemical properties of Zhundong coal ashes[J]. Journal of Engineering Thermophysics, 2014, 35(3): 609-613. | |
25 | 李文, 白进. 煤的灰化学[M]. 北京: 科学出版社, 2013: 46. |
Li W, Bai J. Chemistry of Ash from Coal[M]. Beijing: Science Press, 2013: 46. | |
26 | Kieffer J, Angell C A. Structural incompatibilities and liquid–liquid phase separation in molten binary silicates: a computer simulation[J]. The Journal of Chemical Physics, 1989, 90(9): 4982-4991. |
27 | Belashchenko D K, Ostrovskii O I. Computer simulation of noncrystalline ionic-covalent oxides CaO-P2O5 [J]. Inorganic Materials, 2002, 38(2): 146-153. |
28 | Guillot B, Sator N. A computer simulation study of natural silicate melts (Ⅱ): High pressure properties[J]. Geochimica et Cosmochimica Acta, 2007, 71(18): 4538-4556. |
29 | Xuan W, Wang H, Yan S, et al. Exploration on the steam gasification mechanism of waste PE plastics based on ReaxFF-MD and DFT methods [J]. Fuel, 2022,315: 123121. |
30 | Zhang Z, Xie B, Zhou W, et al. Structural characterization of FeO-SiO2-V2O3 slags using molecular dynamics simulations and FT-IR spectroscopy[J]. ISIJ International, 2016, 56(5): 828-834. |
31 | Zhang S F, Zhang X, Liu W, et al. Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag[J]. Journal of Non-Crystalline Solids, 2014, 402: 214-222. |
32 | Wu T, He S P, Liang Y J, et al. Molecular dynamics simulation of the structure and properties for the CaO-SiO2 and CaO-Al2O3 systems[J]. Journal of Non-Crystalline Solids, 2015, 411: 145-151. |
33 | Xuan W W, Wang H N, Xia D H. Depolymerization mechanism of CaO on network structure of synthetic coal slags[J]. Fuel Processing Technology, 2019, 187: 21-27. |
34 | Grundy A N, Jung I H, Pelton A D, et al. A model to calculate the viscosity of silicate melts (Ⅱ): The NaO0.5-MgO-CaO-AlO1.5-SiO2 system [J]. International Journal of Materials Research, 2008, 99(11): 1195-1209. |
35 | Kim W Y, Pelton A D, Decterov S A. A model to calculate the viscosity of silicate melts (Ⅲ): Modification for melts containing alkali oxides [J]. International Journal of Materials Research, 2012, 103(3): 313-328. |
36 | Cormier L, Neuville D R, Calas G. Structure and properties of low-silica calcium aluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 2000, 274(1/2/3): 110-114. |
37 | Ganster P, Benoit M, Kob W, et al. Structural properties of a calcium aluminosilicate glass from molecular-dynamics simulations: a finite size effects study[J]. The Journal of Chemical Physics, 2004, 120(21): 10172-10181. |
38 | Xuan W W, Wang H N, Xia D H, et al. Quantitative study of Si structural units in coal slags and their influence on viscosity[J]. Energy & Fuels, 2019, 33(11): 10593-10601. |
39 | Wu T, Wang Q, Yu C F, et al. Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation[J]. Journal of Non-Crystalline Solids, 2016, 450: 23-31. |
40 | Xuan W W, Wang H N, Xia D H. Deep structure analysis on coal slags with increasing silicon content and correlation with melt viscosity[J]. Fuel, 2019, 242: 362-367. |
41 | Chen Y, Pan W J, Jia B R, et al. Effects of the amphoteric behavior of Al2O3 on the structure and properties of CaO-SiO2-Al2O3 melts by molecular dynamics[J]. Journal of Non-Crystalline Solids, 2021, 552: 120435. |
[1] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[2] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[3] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[4] | 雷博雯, 吴建华, 吴启航. R290低压比热泵高补气过热度循环研究[J]. 化工学报, 2023, 74(5): 1875-1883. |
[5] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[6] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[7] | 姚翰林, 辛忠. 液相沉淀反应在管式微通道反应器中的流动行为研究[J]. 化工学报, 2022, 73(8): 3518-3528. |
[8] | 朱晨阳, 刘向阳, 何茂刚, 陈光进. 基于Eyring绝对速率理论的流体混合物黏度推算[J]. 化工学报, 2022, 73(11): 4826-4837. |
[9] | 张家庆, 刘朝晖, 李宇, 宋晨阳. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161. |
[10] | 许晨怡, 叶恭然, 郭豪文, 庄园, 郭智恺, 韩晓红, 陈光明. 制冷剂R1336mzz(E)液相黏度理论与实验研究[J]. 化工学报, 2021, 72(6): 3261-3269. |
[11] | 赵峻逸, 薛士东, 韩敬坤, 温荣福, 兰忠, 郝婷婷, 马学虎. 双液滴碰撞行为及调控机制的研究进展[J]. 化工学报, 2021, 72(5): 2354-2372. |
[12] | 曹燕,丁延,郭义仓,汪城,刘英杰,陶磊,李进龙. 溴化锂及离子液体水溶液密度、黏度和表面张力测定与计算[J]. 化工学报, 2021, 72(4): 1874-1884. |
[13] | 陈裕博, 杨昭, 武晓昆, 吕子建, 张勇. R513A的饱和液相黏度特性研究[J]. 化工学报, 2021, 72(11): 5502-5509. |
[14] | 沈中杰,郭晓镭,梁钦锋,刘海峰. 基于晶体生长及形貌的煤灰渣黏温模型[J]. 化工学报, 2021, 72(10): 5040-5052. |
[15] | 孙盈盈, 周明辉, 黄佳, 江航, 杨济如, 樊铖. 稠油地下改质开采技术及发展趋势[J]. 化工学报, 2020, 71(9): 4141-4151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||