化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4141-4151.DOI: 10.11949/0438-1157.20200498
孙盈盈1,2(),周明辉1,2,黄佳1,2,江航1,2,杨济如1,2,樊铖3()
收稿日期:
2020-05-06
修回日期:
2020-07-15
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
樊铖
作者简介:
孙盈盈(1986—),女,博士,工程师,基金资助:
Yingying SUN1,2(),Minghui ZHOU1,2,Jia HUANG1,2,Hang JIANG1,2,Jiru YANG1,2,Cheng FAN3()
Received:
2020-05-06
Revised:
2020-07-15
Online:
2020-09-05
Published:
2020-09-05
Contact:
Cheng FAN
摘要:
稠油作为全球重要的非常规原油资源,是保障我国能源安全、重大工程需求的重要资源。目前常规的热采稠油油藏陆续进入开采后期,高能耗、高污染、高成本问题日趋严重,亟需依靠技术换代实现开发方式升级。稠油地下改质是通过向油藏中注入改质催化剂,使其与稠油发生化学反应,实现稠油地下不可逆降黏并高效采出的一种开采方式,是近十年来最受瞩目的下一代稠油开采技术之一。本文从技术机理、改质催化剂及开采效果影响因素三方面阐述了技术内涵,通过系统调研国内外相关学者和企业的代表性成果,按照催化剂种类、反应温度和降黏效果等进行综合性分类统计,对比了现有矿场试验的开采方式和采油效果,指出制约技术应用的两个关键问题,并展望了技术未来发展方向。
中图分类号:
孙盈盈, 周明辉, 黄佳, 江航, 杨济如, 樊铖. 稠油地下改质开采技术及发展趋势[J]. 化工学报, 2020, 71(9): 4141-4151.
Yingying SUN, Minghui ZHOU, Jia HUANG, Hang JIANG, Jiru YANG, Cheng FAN. Research progress and development tendency of heavy oil in-situ upgrading technologies[J]. CIESC Journal, 2020, 71(9): 4141-4151.
1 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (1): High temperature hydrolysis and thermolysis of therahydro-thiophene in relation to steam stimulation processes[J]. Fuels, 1983, 62(5): 959-962. |
2 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (2): Influence of pH on the high temperature hydrolysis of tetraothiophene and thiophene[J]. Fuels, 1984, 63(1): 125-128. |
3 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (3): Reaction of thiophene and tetrahydro-thiophene with vanadyl and nickel salts[J]. Fuels, 1984, 63(6): 1649-1645. |
4 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (4): The high-temperature reaction of thiophene and tetrahydro-thiophene with aqueous solution of aluminium and first row transition-metal cations[J]. Fuels, 1987, 66(5): 1353-1357. |
5 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (5): Reaction of thiophene and tetrahydro-thiophene with aqueous group VIII B metal species at high temperature[J]. Fuels, 1987, 66(5): 1699-1702. |
6 | Clark P D, Hyne J B. Studies on the chemical reactions of heavy oils under steam stimulation[J]. AOSTRA Journal of Research, 1990, 6(1): 53-64. |
7 | Rivas O R, Camposr E, Borges L G. Experimental evaluation of transition metals salt solutions as additives in steam recovery processes[C]. SPE18076, 1988. |
8 | Clark P D, Kirk M J. Studies on the upgrading of bituminous oils with water and transition metal catalysts[J]. Energy & Fuels, 1994, 8(2): 380-387. |
9 | Duttar P, McCaffrey W C, Gray M R. Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry[J]. Energy & Fuels, 2000, 14(2): 671-676. |
10 | Chen H H, Montgomery D S, Strausz O P. Hydrocracking of athabasca bitumen using oil-soluble organometallic catalysts (I): The influence of temperature and pressure on catalyst activity[J]. AOSTRA Journal of Research, 1988, (4): 45-47. |
11 | 毛金成, 王海彬, 李勇明, 等. 稠油开发水热裂解催化剂研究进展[J]. 特种油气藏, 2016, 23(3): 1-5. |
Mao J C, Wang H B, Li Y M, et al. Aquathermolysis catalyst advances in heavy oil production[J]. Special Oil & Gas Reservoirs, 2016, 23(3): 1-5. | |
12 | 雷斌, 黄娟, 候钰, 等. 胜利稠油催化改质降黏的机理[J]. 石油化工, 2016, 45(10): 1209-1214. |
Lei B, Huang J, Hou Y, et al. Mechanism of aboveground upgrading and viscosity reduction for Shengli heavy oil by catalysis [J]. Petrochemical Technology, 2016, 45(10): 1209-1214. | |
13 | 李晨. 稠油中含硫化合物的催化裂解机理以及含氧化合物对黏度影响机制研究[D]. 武汉: 中国地质大学, 2019. |
Li C. Research on catalytic dissociation mechanism of S-containing compounds in heavy oil and viscosity evolution of heavy oil upon O-containing compounds[D]. Wuhan: China University of Geosciences, 2007. | |
14 | 张洁, 李小龙, 陈刚, 等. 水溶性配合物催化的稠油低温热裂解研究[J]. 燃料化学学报, 2014, 42(4): 443-448. |
Zhang J, Li X L, Chen G, et al. Study on aquathermolysis of heavy oil at relatively low temperature catalyzed by water-soluble complexes [J]. Journal of Fuel Chemistry and Technology, 2014, 42(4): 443-448. | |
15 | 范洪富, 刘永健, 赵晓非, 等. 金属盐对辽河稠油水热裂解反应影响研究[J]. 燃料化学学报, 2001, 29(5): 430-433. |
Fan H F, Liu Y J, Zhao X F, et al. Studies on effect of metal ions on aquathermolysis reaction of Liaohe heavy oils under steam treatment[J]. Journal of Fuel Chemistry and Technology, 2001, 29(5): 430-433. | |
16 | 王杰祥, 樊泽霞, 任熵, 等. 单家寺稠油催化水热裂解实验研究[J]. 油田化学, 2006, 23(3): 205-208. |
Wang J X, Fan Z X, Ren S, et al. An Experimental study on catalytic aquathermolysis of Shanjiasi heavy oil[J]. Oilfield Chemistry, 2006, 23(3): 205-208. | |
17 | 樊泽霞, 赵福麟, 王杰祥, 等. 超稠油供氢水热裂解改质降黏研究[J]. 燃料化学学报, 2006, 34(3): 315-318. |
Fan Z X, Zhao F L, Wang J X, et al. Upgrading and viscosity reduction of super heavy oil by aqua-thermolysis with hydrogen donor[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 315-318. | |
18 | 成浪, 李玲, 陆江银, 等. 油酸改性Fe2(MoO4)3用于稠油水热催化降黏的研究[J]. 石油炼制与化工, 2019, 50(7): 31-37. |
Cheng L, Li L, Lu J Y, et al. Experimental study on oleic acid modified Fe2(MoO4)3 for catalytic aquathermolysis of heavy oil[J]. Petroleum Processing and Petrochemicals, 2019, 50(7): 31-37. | |
19 | 冯旭阳, 王强, 吕文东, 等. 磺化型有机金属催化剂在稠油降黏改质中的应用[J]. 精细石油化工, 2018, 35(6): 16-20. |
Feng X Y, Wang Q, Lyu W D, et al. Application of sulfonated organometallic catalyst in viscosity reducing of heavy oil[J]. Speciality Petrochemicals, 2018, 35(6): 16-20. | |
20 | Tang X D, Zhu H, Li J J, et al. Catalytic aquathermolysis of heavy oil with oil-soluble multicomponent acrylic copolymers combined with Cu2+[J]. Petroleum Science and Technology, 2015, 33: 1721-1727. |
21 | 朱海. 稠油高分子聚合物双功能水热催化改质催化剂的制备与评价[D]. 成都: 西南石油大学, 2016. |
Zhu H. Preparation and evaluation of difunctional aquathermolysis polymer-catalyst for heavy oil[D]. Chengdu: Southwest Petroleum University, 2015. | |
22 | 吴川, 雷光伦, 姚传进, 等. 双亲催化剂作用超稠油水热裂解降黏机理研究[J]. 燃料化学学报, 2010, 38(6): 684-690. |
Wu C, Lei G L, Yao C J, et al. Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 684-690. | |
23 | 黄佳, 江航, 赵长虹, 等. 复配纳米催化剂在稠油降黏中的应用及其机理[J]. 中国粉体技术, 2020, 26(1): 68-74. |
Huang J, Jiang H, Zhao C H, et al. Effects and mechanism of combined nano-catalysts on viscosity reduction of heavy oil [J]. China Powder Science and Technology, 2020, 26(1): 68-74. | |
24 | 李彦平, 张辉, 崔盈贤, 等. 双功能金属纳米晶/水合肼体系催化稠油原位裂解加氢降黏改质[J]. 石油学报(石油加工), 2019, 35(3): 540-547. |
Li Y P, Zhang H, Cui Y X, et al. In-situ viscosity reduction for heavy oil through catalytic hydrocracking with bifunctional metal nanocrystals/hydrazine hydrate system[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(3): 540-547. | |
25 | 周明辉, 孙文杰, 李克文. 纳米催化剂辅助超稠油氧化改质实验研究[J]. 中国科学(技术科学), 2017, 47(2): 197-203. |
Zhou M H, Sun W J, Li K W. Experimental research of nano catalyst assisted oxidization upgrading of super heavy oil[J]. Scientia Sinica (Technologica), 2017, 47(2): 197-203. | |
26 | 马占芳, 司国丽, 初一鸣, 等. 三角银纳米柱的研究进展[J]. 化学进展, 2009, 21: 1847-1856. |
Ma Z F, Si G L, Chu Y M, et al. Advances on triangular silver nanoprisms[J]. Progress in Chemistry, 2009, 21: 1847-1856. | |
27 | Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control[J]. Adv. Mater., 2010, 22: 1781-1804. |
28 | 潘庆谊, 徐甲强. 微乳液法纳米SnO2材料的合成、结构与气敏性能[J]. 无机材料学报, 1999, 14: 83-89. |
Pan Q Y, Xu J Q. Preparation, microstructure and gas sensing properties of nanosized SnO2 materials made by microemulsions[J]. Journal of Inorganic Materials, 1999, 14: 83-89. | |
29 | 成国祥, 唐懿, 沈锋, 等. 水/Span85-Tween60/环己烷微乳液及纳米复合微粒制备[J]. 天津大学学报(自然科学与工程技术版), 2000, 33: 401-235. |
Cheng G X, Tang Y, Shen F, et al. Study on H2O/Span85-Tween60/cyclohexane microemulsions[J]. Journal of Tianjin University (Science and Technology), 2000, 33: 401-235. | |
30 | 马维平, 孙洪巍, 苗芳, 等. 十六烷基三甲基溴化铵/正丁醇/环己烷/水微乳液制备纳米粉体的研究[J]. 硅酸盐通报, 2008, 27: 645-648. |
Ma W P, Sun H W, Miao F, et al. Influencing factors of microemulsion microstructure of cetyltrimethyl ammonium bromide/n-butanol/cyclohexane/water[J]. Bulletin of the Chinese Ceramic Society, 2008, 27: 645-648. | |
31 | 唐晓东, 邓刘扬, 李晶晶, 等. 稠油催化改质降黏的实验研究[J]. 精细化工, 2016, 33(6): 699-702. |
Tang X D, Deng L Y, Li J J, et al. Experimental study on catalytic upgrading and viscosity reduction of heavy oil[J]. Fine Chemicals, 2016, 33(6): 699-702. | |
32 | 李芳芳, 杨胜来, 高启超, 等. 化学生热催化裂解复合降黏体系提高稠油采收率技术[J]. 油田化学, 2015, 32(1): 93-97. |
Li F F, Yang S L, Gao Q C, et al. Chemical heat generating and catalytic cracking complex viscosity reduction system for heavy oil EOR[J]. Oilfield Chemistry, 2015, 32(1): 93-97. | |
33 | Zhang Z Y, Maria B, Daulat M. Experimental study of in-situ upgrading for heavy oil using hydrogen donors and catalyst under steam injection condition[C]. SPE157981, 2012. |
34 | Franco C A, Mejia J M. Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts[C]. SPE179699-MS, 2016. |
35 | Carlos R, Pedro P A. In-situ heavy oil upgrading through ultra-catalyst injection in naturally fractured reservoirs: experimental section[C]. SPE180154-MS, 2016. |
36 | Luky H, Yaser S, Ole T. Experimental investigation of decalin and metal nanoparticles-assisted bitumen upgrading during catalytic aquathermolysis[C]. SPE167807, 2014. |
37 | 李伟, 朱建华, 齐建华. 纳米Ni催化剂在超稠油水热裂解降黏中的应用研究[J]. 燃料化学学报, 2007, 35(2): 176-180. |
Li W, Zhu J H, Qi J H. Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 176-180. | |
38 | 于波. 辽河稠油催化降黏研究[D]. 青岛: 中国石油大学(华东), 2007. |
Yu B. Study on visbreaking of Liaohe heavy oil with catalyst[D]. Qingdao: China University of Petroleum, 2007. | |
39 | Shah A, Fishwick R P, Leeke G, et al. Experimental optimization of catalytic process in situ for heavy-oil and bitumen upgrading[C]. SPE136870, 2010. |
40 | 张会成, 邓文安, 阙国和. 胜利渣油在供氢剂和溶剂下的热裂化特性研究[J]. 石油学报(石油加工), 1997, 13(6): 17-22. |
Zhang H C, Deng W A, Que G H. Study on thermal reaction characteristics of Shengli vacuum residue with hydrogen donor and solvent[J]. Journal of Petroleum (Petroleum Processing), 1997, 13(6): 17-22. | |
41 | 李博. 辽河油田催化供氢稠油改质的实验[J]. 东北石油大学学报, 2004, 28(4): 24-26. |
Li B. Experiments of in-situ upgrading heavy oil by means of catalyst and hydrogen donor[J]. Journal of Northeast Petroleum University, 2004, 28(4): 24-26. | |
42 | 刘永建, 赵法军, 赵国, 等. 稠油的甲酸供氢催化水热裂解改质实验研究[J]. 油田化学, 2008, 25(2): 133-136. |
Liu Y J, Zhao F J, Zhao G, et al. Study on upgrading heavy oil by catalytic aquathermolysis using formic acid as hydrogen donor[J]. Oilfield Chemistry, 2008, 25(2): 133-136. | |
43 | 赵法军. 稠油井下改质降黏机理及应用研究[D]. 大庆: 大庆石油学院, 2008. |
Zhao F J. Research on mechanism and application of downhole viscosity reduction upgrading of heavy oil[D]. Daqing: Daqing Petroleum Institute, 2008. | |
44 | Chen E Y, Liu Y J, Liang M, et al. A study on the viscosity reduction of Liaohe heavy oil by oil-soluble nickel oleate[J]. Journal of Daqing Petroleum Institute, 2010, 34(6): 68-71. |
45 | Liu Y, Chen E, Wen S, et al. The preparation and evaluation of oil-soluble catalyst for aquathermolysis of heavy oil[J]. Chemical Engineering of Oil & Gas, 2005, 34(6): 511-512. |
46 | Qin W L, Xiao Z L. The researches on upgrading of heavy crude oil by catalytic aquathermolysis treatment using a new oil-soluble catalyst[J]. Advanced Materials Research, 2012, 608/609: 1428-1432. |
47 | Yusuf A, Al-Hajri R S, Al-Waheibi Y M, et al. In-situ upgrading of Omani heavy oil with catalyst and hydrogen donor[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 102-112. |
48 | Feoktistov D A, Kayukova G P, Vakhin A V, et al. Catalytic aquathermolysis of high-viscosity oil using iron, cobalt, and copper tallates[J]. Chemistry and Technology of Fuels and Oils, 2018, 53(6): 905-912. |
49 | Zhao X, Tan X, Liu Y. Behaviors of oil-soluble catalyst for aquathermolysis of heavy oil[J]. Industrial Catalysis, 2008, 16(11): 31-34. |
50 | Foss L, Petrukhina N, Kayukova G, et al. Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates[J]. Journal of Petroleum Science and Engineering, 2018, 169: 269-276. |
51 | Fixari B, Peureux S, Elmouchnino J, et al. New developments in deep hydroconversion of heavy oil residues with dispersed catalysts(1): Effect of metals and experimental conditions[J]. Energy & Fuels, 1994, 8(3): 588-592. |
52 | Wu C, Su J, Zhang R, et al. The use of amphiphilic nickel chelate for catalytic aquathermolysis of extra-heavy oil under steam injection conditions[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(13): 1437-1444. |
53 | Chao K, Chen Y, Li J, et al. Upgrading and visbreaking of super-heavy oil by catalytic aquathermolysis with aromatic sulfonic copper[J]. Fuel Processing Technology, 2012, 104: 174-180. |
54 | Conoco Phillips Company, Corporation Harris. In situ radio frequency catalytic upgrading: US9004164 B2[P]. 2015-04-14. |
55 | Energy Underground, Inc. In-situ upgrading of bitumen or heavy oil: US2013/0140021 A1[P]. 2013-06-06. |
56 | Chevron U.S.A. Inc. Method for upgrading situ heavy oil: US2016/0177691 A1[P]. 2016-06-23. |
57 | Gilman A H, Joseph A A. Integrated in situ retorting and refining of heavy-oil and tar sand deposits: US9085972 B1[P]. 2015-07-21. |
58 | Stephen R. Oil sands get wired-seeking more oil, fewer emissions[C]. SPE0912-0034-JPT, 2012. |
59 | 宋建平, 陈建华, 刘斌. 低频脉冲波强化采油技术研究及试验[J]. 石油钻采工艺, 1994, 16(6): 81-87. |
Song J P, Chen J H, Liu B. Study and test of enhanced oil recovery technique using low-frequency pulse wave[J]. Oil Drilling & Production Technology, 1994, 16(6): 81-87. | |
60 | 郭新超, 李勇龙, 张武涛, 等. 脉冲波开采稠油装置及脉冲波开采稠油的方法: 108979605A[P]. 2018-12-11. |
Guo X C, Li Y L, Zhang W T, et al. Pulse wave heavy oil recovery equipment and method: 108979605A[P]. 2018-12-11. | |
61 | 聂泳培, 李铁建, 陈壮志, 等. 一种利用聚能脉冲进行稠油开采的设备及其使用方法: 108386168A[P]. 2018-08-10. |
Ni Y P, Li T J, Chen Z Z, et al. An equipment for heavy oil recovery using a cumulative energy pulse and its application method: 108386168A[P]. 2018-08-10. | |
62 | 孙仁远, 王连保, 彭秀君, 等. 稠油超声波降黏试验研究[J]. 油气田地面工程, 2001, 20(5): 22-23. |
Sun R Y, Wang L B, Peng X J, et al. Experimental study on ultrasonic viscosity reduction of heavy oil [J]. Oil-Gas Field Surface Engineering, 2001, 20(5): 22-23. | |
63 | Bjorndalen N, Islam M R. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well[J]. Journal of Petroleum Science and Engineering, 2004, 43: 139-150. |
64 | 王颖. 稠油微波加热降黏机理的研究[D]. 北京: 中国科学院电子学研究所, 2002. |
Wang Y. The study of the mechanism on the viscosity reduction of the heavy oil radiated by the microwave[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2002. | |
65 | Mozafari M, Nasri Z. Operational conditions effects on Iranian heavy oil upgrading using microwave irradiation[J]. Journal of Petroleum Science and Engineering, 2017, 151: 40-48. |
66 | Gopinath R, Dalai A K, Adjaye J. Effects of ultrasound treatment on the upgradation of heavy oil[J]. Energy and Fuels, 2006, 20(1): 271-277. |
67 | Wang Z, Wang H, Guo Q. Effect of ultrasonic treatment on the properties of petroleum coke oil slurry[J]. Energy and Fuels, 2006, 20(5): 1959-1964. |
68 | Ershov M A, Baranov D A, Mullakaev M S. Reducing viscosity of paraffinic oils in ultrasonic field[J]. Chemical and Petroleum Engineering, 2011, 47(7/8): 457-461. |
69 | Gollapudi U K, Bang S S, Islam M R. Ultrasonic treatment for removal of asphaltene deposits during petroleum production[J]. Society of Petroleum Engineers, 1994, 273(77): 653-660. |
70 | Hamidi H, Mohammadian E, Junin R, et al. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium[J]. Ultrasonics, 2014, 54(2): 655-662. |
71 | 丁雨溪, 仲笑君, 孔德晶. 基于电磁技术改进原油降黏参数研究[J]. 当代化工, 2017, 46(8): 1600-1603. |
Ding Y X, Zhong X J, Kong D J. Study on improvement of reducing parameters of crude oil based on electromagnetic technology[J]. Contemporary Chemical Industry, 2017, 46(8): 1600-1603. | |
72 | 孙雪琼, 王钊, 宋文磊. 基于高频交变复合磁场的防蜡降黏技术[J]. 油气田地面工程, 2012, 31(6): 15-16. |
Sun X Q, Wang Z, Song W L. Anti-wax and viscosity-reducing technology based on high frequency alternating magnetic field[J]. Oil-Gas Field Surface Engineering, 2012, 31(6): 15-16. | |
73 | 魏爱军, 金鑫涛, 门凤银. 原油高频降黏时效性实验研究[J]. 电子科技, 2011, 24(1): 109-111. |
Wei A J, Jin X T, Men F Y. Experimental study on timeliness of crude oil high-frequency viscosity reduction[J]. Electronic Science and Technology, 2011, 24(1): 109-111. | |
74 | 马秀波, 郑海霞, 尹教建, 等. 磁处理原油防蜡降黏的机理[J]. 西安石油大学学报(自然科学版), 2005, (4): 50-52. |
Ma X B, Zheng H X, Yin J J, et al. Paraffin-controlling viscosity-reducing effect of magnetic treatment on crude oil[J]. Journal of Xi'an Petroleum University (Natural Science Edition), 2005, (4): 50-52. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[12] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||