化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2088-2099.DOI: 10.11949/0438-1157.20230285
丁俊华1(), 俞树荣1(), 王世鹏1, 洪先志2, 包鑫2, 丁雪兴1
收稿日期:
2023-03-23
修回日期:
2023-04-28
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
俞树荣
作者简介:
丁俊华(1991—),男,博士研究生,13919104516@163.com
基金资助:
Junhua DING1(), Shurong YU1(), Shipeng WANG1, Xianzhi HONG2, Xin BAO2, Xuexing DING1
Received:
2023-03-23
Revised:
2023-04-28
Online:
2023-05-05
Published:
2023-06-29
Contact:
Shurong YU
摘要:
为探究重大关键设备中超高速干气密封的气膜流场规律,考虑超高转速产生的湍流效应、惯性效应、真实气体效应、阻塞流效应对气膜流场和密封性能的影响,构建多重效应下湍流计算模型。试验验证理论模型的正确性和有效性,并探索超高速条件下不同工况参数和结构参数对密封性能的影响。研究结果表明:湍流效应下,泄漏率随转速和介质压力的增大而增大;开启力随转速的增大先略微减小后逐渐增大,而随介质压力的增大非线性提升。本实例超高速工况下(50000 r/min、11 MPa),优化结果表明螺旋角选择16°,槽深则在6~7 μm范围内选择。这为设计和制造超高速干气密封提供了理论支撑。
中图分类号:
丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099.
Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects[J]. CIESC Journal, 2023, 74(5): 2088-2099.
参数 | 数值 |
---|---|
密封轴径/mm | 35 |
螺旋槽根径/mm | 72 |
平衡直径/mm | 71 |
槽数/个 | 12 |
槽深/μm | 6 |
密封端面外径/mm | 91 |
密封端面内径/mm | 66 |
弹簧力/N | 56 |
螺旋角/(°) | 16 |
表1 超高速干气密封结构参数
Table 1 Structural parameters of ultra high speed dry gas seal
参数 | 数值 |
---|---|
密封轴径/mm | 35 |
螺旋槽根径/mm | 72 |
平衡直径/mm | 71 |
槽数/个 | 12 |
槽深/μm | 6 |
密封端面外径/mm | 91 |
密封端面内径/mm | 66 |
弹簧力/N | 56 |
螺旋角/(°) | 16 |
案例 | 转速/(r/min) | 介质压力/MPa | 螺旋角/(°) | 槽深/μm |
---|---|---|---|---|
1 | 10000 | 5 | 16 | 6 |
2 | 50000 | 11 | 16 | 6 |
3 | 50000 | 11 | 20 | 6 |
4 | 50000 | 11 | 16 | 3 |
表2 压力场模拟计算案例工况及结构参数
Table 2 Working conditions and structural parameters of pressure field simulation calculation cases
案例 | 转速/(r/min) | 介质压力/MPa | 螺旋角/(°) | 槽深/μm |
---|---|---|---|---|
1 | 10000 | 5 | 16 | 6 |
2 | 50000 | 11 | 16 | 6 |
3 | 50000 | 11 | 20 | 6 |
4 | 50000 | 11 | 16 | 3 |
1 | 许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323. |
Xu H J, Song P Y, Mao W Y, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323. | |
2 | 谢静, 白少先. 高速气流阻塞效应对倾斜微孔端面密封动压特性的影响[J]. 摩擦学学报, 2017, 37(6): 806-813. |
Xie J, Bai S X. The effect of high speed airflow lubrication on hydrodynamic properties of inclined-dimples face seals[J]. Tribology, 2017, 37(6): 806-813. | |
3 | Jin J, Peng X D, Meng X K, et al. Analysis of stability of two-phase flow mechanical seal with spiral groove under high speeds[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(5): 260. |
4 | 李志刚, 方志, 李军. 液相和多相环境下环形动密封泄漏流动和转子动力特性的研究进展[J]. 西安交通大学学报, 2020, 54(9): 1-22. |
Li Z G, Fang Z, Li J. Review of the leakage flow and rotordynamic characteristics of the annular dynamic seals in liquid and multiple phases conditions[J]. Journal of Xi’an Jiaotong University, 2020, 54(9): 1-22. | |
5 | 李世聪, 钱才富, 李双喜, 等. 油气两相动压密封动态特性的热流固耦合研究[J]. 化工学报, 2020, 71(5): 2190-2201. |
Li S C, Qian C F, Li S X, et al. Study of thermal-fluid-solid coupling on dynamic characteristics of oil-gas miscible backflow pumping seal[J]. CIESC Journal, 2020, 71(5): 2190-2201. | |
6 | 王衍, 胡琼, 肖业祥, 等. 超高速干气密封扰流效应及抑扰机制[J]. 航空学报, 2019, 40(10): 111-120. |
Wang Y, Hu Q, Xiao Y X, et al. Turbulence effect and suppression mechanism of dry gas seal at ultra-high speeds[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 111-120. | |
7 | 沈伟, 彭旭东, 江锦波, 等. 惯性效应对超高速倾斜端面气膜密封稳动态特性影响[J]. 摩擦学学报, 2019, 39(4): 452-462. |
Shen W, Peng X D, Jiang J B, et al. The influence of inertia effect on steady performance and dynamic characteristic of super high-speed tilted gas face seal[J]. Tribology, 2019, 39(4): 452-462. | |
8 | 严如奇, 丁雪兴, 徐洁, 等. 离心惯性力效应对超临界二氧化碳干气密封流场与密封特性影响分析[J]. 摩擦学学报, 2020, 40(6): 781-791. |
Yan R Q, Ding X X, Xu J, et al. The influence analysis of centrifugal inertia force effect on the flow field and sealing characteristics of supercritical carbon dioxide dry gas seal[J]. Tribology, 2020, 40(6): 781-791. | |
9 | Constantinescu V N, Eng M, Tech M S. On turbulent lubrication[J]. Proceedings of the Institution of Mechanical Engineers, 1959, 173(38): 881-900. |
10 | Constantinescu V N. Analysis of bearings operating in turbulent regime[J]. Journal of Basic Engineering, 1962, 84(1): 139-151. |
11 | Ng C W, Pan C H T. A linearized turbulent lubrication theory[J]. Journal of Basic Engineering, 1965, 87(3): 675-682. |
12 | Ng C W. Fluid dynamic foundation of turbulent lubrication theory[J]. A S L E Transactions, 1964, 7(4): 311-321. |
13 | Hirs G G. A bulk-flow theory for turbulence in lubricant films[J]. Journal of Lubrication Technology, 1973, 95(2): 137-145. |
14 | Elrod H G, Ng C W. A theory for turbulent fluid films and its application to bearings[J]. Journal of Lubrication Technology, 1967, 89(3): 346-362. |
15 | Taylor C M, Dowson D. Turbulent lubrication theory-application to design[J]. Journal of Lubrication Technology, 1974, 96(1): 36-46. |
16 | Constantinescu V N, Galetuse S. On the possibilities of improving the accuracy of the evaluation of inertia forces in laminar and turbulent films[J]. Journal of Lubrication Technology, 1974, 96(1): 69-77. |
17 | Khalil M F, Kassab S Z, Ismail A S. Influence of inertia forces on the performance of turbulent externally pressurized bearings[J]. Tribology International, 1992, 25(1): 17-25. |
18 | Brunetière N, Tournerie B, Frȇne J. Influence of fluid flow regime on performances of non-contacting liquid face seals[J]. Journal of Tribology, 2002, 124(3): 515-523. |
19 | Brunetière N. A modified turbulence model for low Reynolds numbers: applications to hydrostatic seals[C]//Proceedings of ASME/STLE 2004 International Joint Tribology Conference. Long Beach, California, USA, 2004: 503-515. |
20 | Brunetière N, Tournerie B. Finite element solution of inertia influenced flow in thin fluid films[J]. Journal of Tribology, 2007, 129(4): 876-886. |
21 | Brunetière N, Tournerie B. The effect of inertia on radial flows—application to hydrostatic seals[J]. Journal of Tribology, 2006, 128(3): 566-574. |
22 | 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659. |
Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659. | |
23 | 沈伟. 高参数干气密封的惯性与湍流效应影响分析与型槽设计[D]. 杭州: 浙江工业大学, 2019. |
Shen W. Influence analysis and groove design of inertia and turbulence effect of high parameter dry gas seal[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
24 | Yan R Q, Chen H Q, Zhang W Z, et al. Calculation and verification of flow field in supercritical carbon dioxide dry gas seal based on turbulent adiabatic flow model[J]. Tribology International, 2022, 165: 107275. |
25 | 严如奇, 丁雪兴, 徐洁, 等. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303. |
Yan R Q, Ding X X, Xu J, et al. Flow field and steady performance of supercritical carbon dioxide dry gas seal based on turbulence model[J]. CIESC Journal, 2021, 72(8): 4292-4303. | |
26 | 章聪, 彭旭东, 江锦波, 等. 实际气体、阻塞和湍流效应对超临界CO2干气密封性能的影响[J]. 中国电机工程学报, 2022, 42(20): 7563-7573. |
Zhang C, Peng X D, Jiang J B, et al. Influence of real gas, choked flow, and turbulence effect on performance of supercritical CO2 dry gas seals[J]. Proceedings of the Chinese Society for Electrical Engineering, 2022, 42(20): 7563-7573. | |
27 | 张肖寒, 孟祥铠, 梁杨杨, 等. 基于湍流模型的高速螺旋槽机械密封稳态性能研究[J]. 摩擦学学报, 2020, 40(2): 260-270. |
Zhang X H, Meng X K, Liang Y Y, et al. Steady performance on high speed spiral-grooved mechanical seals based on turbulent model[J]. Tribology, 2020, 40(2): 260-270. | |
28 | 严如奇. 超临界二氧化碳干气密封流体动力润滑与密封性能研究[D]. 兰州: 兰州理工大学, 2022. |
Yan R Q. Study on hydrodynamic lubrication and sealing performance of supercritical carbon dioxide dry gas seal[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
29 | Poling B E, Prausnitz J M, O'Connell J P. The Properties of Gases and Liquids[M]. 5th ed. New York: McGraw-Hill, 2001. |
30 | 许恒杰. 实际气体及其阻塞和惯性效应对干气密封动力学特性影响规律研究[D]. 昆明: 昆明理工大学, 2019. |
Xu H J. Study on the influence of actual gas, its blocking and inertia effect on the dynamic characteristics of dry gas seal[D]. Kunming: Kunming University of Science and Technology, 2019. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||