化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2157-2169.DOI: 10.11949/0438-1157.20230018
李晨曦1(), 刘永峰1(), 张璐1, 刘海峰2, 宋金瓯2, 何旭3
收稿日期:
2023-01-09
修回日期:
2023-05-05
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
刘永峰
作者简介:
李晨曦(1998—),男,硕士研究生,864173413@qq.com
基金资助:
Chenxi LI1(), Yongfeng LIU1(), Lu ZHANG1, Haifeng LIU2, Jin’ou SONG2, Xu HE3
Received:
2023-01-09
Revised:
2023-05-05
Online:
2023-05-05
Published:
2023-06-29
Contact:
Yongfeng LIU
摘要:
为研究正庚烷(n-C7H16)在O2/CO2氛围下的燃烧特性,提出了基于CO2与H·详细反应路径的C-H燃烧机理。通过密度泛函理论对CO2与H·可能存在的反应路径进行了分析,根据定容燃烧弹实际尺寸建立了计算网格,利用C-H机理计算了正庚烷在不同氛围(空气、53%O2/47%CO2、61%O2/39%CO2)下的燃烧过程;搭建了定容燃烧弹可视化实验平台,对正庚烷在不同氛围下的燃烧过程进行了测量;对CO2的反应位点、CO2+H·
中图分类号:
李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169.
Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere[J]. CIESC Journal, 2023, 74(5): 2157-2169.
参数 | 数值 |
---|---|
喷射脉宽/ms | 2 |
单次喷射质量/mg | 18.4 |
喷射压力/MPa | 120 |
预热温度间隔/K | 60 |
燃料加压间隔/MPa | 6 |
燃烧室初始温度/K | 850 |
燃烧室初始压力/MPa | 3 |
初始喷油压力/MPa | 35 |
燃油温度/K | 298 |
摄像机帧数/(帧/秒) | 10000 |
表1 实验参数
Table 1 Experimental parameters
参数 | 数值 |
---|---|
喷射脉宽/ms | 2 |
单次喷射质量/mg | 18.4 |
喷射压力/MPa | 120 |
预热温度间隔/K | 60 |
燃料加压间隔/MPa | 6 |
燃烧室初始温度/K | 850 |
燃烧室初始压力/MPa | 3 |
初始喷油压力/MPa | 35 |
燃油温度/K | 298 |
摄像机帧数/(帧/秒) | 10000 |
编号 | 反应 |
---|---|
R14 | H2O2+O2 |
R15 | H2O2+H· |
R16 | H2O2(+M) |
R823 | C7H15O2-2 |
R825 | C7H15O2-3 |
R826 | C7H15O2-4 |
R828 | C7H15O2-1 |
R1033 | C7H15O2-2 |
R1047 | C7H15O2-3 |
R1058 | C7H15O2-4 |
R1134 | C7H14OOH1-3O2 |
R1247 | C7H14OOH2-4O2 |
R1250 | C7H14OOH3-5O2 |
表2 对温度最敏感的基元反应
Table 2 The most temperature sensitive elementary reaction
编号 | 反应 |
---|---|
R14 | H2O2+O2 |
R15 | H2O2+H· |
R16 | H2O2(+M) |
R823 | C7H15O2-2 |
R825 | C7H15O2-3 |
R826 | C7H15O2-4 |
R828 | C7H15O2-1 |
R1033 | C7H15O2-2 |
R1047 | C7H15O2-3 |
R1058 | C7H15O2-4 |
R1134 | C7H14OOH1-3O2 |
R1247 | C7H14OOH2-4O2 |
R1250 | C7H14OOH3-5O2 |
1 | 庞子凡, 蒋斌, 朱春英, 等. 微通道内CO2吸收与传质及资源化利用的研究进展[J]. 化工学报, 2022, 73(1): 122-133. |
Pang Z F, Jiang B, Zhu C Y, et al. Progress of absorption, mass transfer and resource utilization of CO2 in microchannels[J]. CIESC Journal, 2022, 73(1): 122-133. | |
2 | 喻健良, 朱海龙, 郭晓璐, 等. 超临界CO2管道减压过程中的热力学特性[J]. 化工学报, 2017, 68(9): 3350-3357. |
Yu J L, Zhu H L, Guo X L, et al. Thermodynamic properties during depressurization process of supercritical CO2 pipeline[J]. CIESC Journal, 2017, 68(9): 3350-3357. | |
3 | 裴普成, 刘永峰. 液氧固碳零排放内燃机: 102003305B[P]. 2012-12-26. |
Pei P C, Liu Y F. Liquid-oxygen carbon-fixation and zero-emission internal combustion engine: 102003305B[P]. 2012-12-26. | |
4 | 郑亮, 肖国炜, 王建昕, 等. 正庚烷喷雾扩散火焰中碳烟体积分数的定量测量[J]. 内燃机学报, 2014, 32(1): 14-19. |
Zheng L, Xiao G W, Wang J X, et al. Quantitative measurement of soot concentration in n-heptane fuel jets[J]. Transactions of CSICE, 2014, 32(1): 14-19. | |
5 | Huo J L, Guan Y H, Zhang M, et al. Diesel spray auto-ignition in different oxidizing atmospheres[J]. Fuel, 2022, 328: 125308. |
6 | Peng C, Zou C, Xia W X, et al. Ignition delay times of n-butane and i-butane under O2/CO2 atmospheres: shock tube experiments and kinetic model[J]. Combustion and Flame, 2021, 234: 111646. |
7 | Tao C F, Liu B, Dou Y L, et al. The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide[J]. Fuel, 2021, 290: 119958. |
8 | Erete J I, Hughes K J, Ma L, et al. Effect of CO2 dilution on the structure and emissions from turbulent, non-premixed methane-air jet flames[J]. Journal of the Energy Institute, 2017, 90(2): 191-200. |
9 | Bejarano P A, Levendis Y A. Single-coal-particle combustion in O2/N2 and O2/CO2 environments[J]. Combustion and Flame, 2008, 153(1/2): 270-287. |
10 | Mehl M, Pitz W J, Westbrook C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 193-200. |
11 | Chen Y L, Chen J Y. Towards improved automatic chemical kinetic model reduction regarding ignition delays and flame speeds[J]. Combustion and Flame, 2018, 190: 293-301. |
12 | Shi Y, Ge H W, Brakora J L, et al. Automatic chemistry mechanism reduction of hydrocarbon fuels for HCCI engines based on DRGEP and PCA methods with error control[J]. Energy and Fuels, 2010, 24(3): 1646-1654. |
13 | Hwang Y T. On the proper usage of sensitivities of chemical kinetics models to the uncertainties in rate coefficients[J]. Proceedings of the National Science Council B.ROC, 1982, 6: 270-278. |
14 | Lu T F, Law C K. A directed relation graph method for mechanism reduction[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1333-1341. |
15 | Lu T, Chen Q X. Shermo: a general code for calculating molecular thermochemistry properties[J]. Computational and Theoretical Chemistry, 2021, 1200: 113249. |
16 | Canneaux S, Bohr F, Henon E. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2014, 35(1): 82-93. |
17 | 马贵阳, 王岳, 张育才, 等. RNG k-ε模型在内燃机缸内湍流数值模拟中的应用[J]. 石油化工高等学校学报, 2002, 15(1): 55-59. |
Ma G Y, Wang Y, Zhang Y C, et al. Application of RNG k-ε model in numeral simulation of turbulent flow in cylinder[J]. Journal of Petrochemical Universities, 2002, 15(1): 55-59. | |
18 | 杨欢, 谢辉, 陈韬, 等. DME分布特征对微火源引燃汽油混合燃烧过程的影响[J]. 燃烧科学与技术, 2018, 24(5): 463-470. |
Yang H, Xie H, Chen T, et al. Effects of dimethyl ether distribution characteristics on micro flame ignition hybrid combustion[J]. Journal of Combustion Science and Technology, 2018, 24(5): 463-470. | |
19 | 魏明锐, 文华, 刘永长, 等. 喷雾过程液滴碰撞模型研究[J]. 内燃机学报, 2005, 23(6): 518-523. |
Wei M R, Wen H, Liu Y C, et al. Modeling study on droplets collision in spray process[J]. Transactions of CSICE, 2005, 23(6): 518-523. | |
20 | Schmidt D P, Rutland C J. Reducing grid dependency in droplet collision modeling[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 227-233. |
21 | Yuan S X, Fan Y G, Chen B, et al. Forming and stripping of the wall film and the influence on gas-liquid separation[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(3): e2447. |
22 | Reitz R D, Diwakar R. Structure of high-pressure fuel sprays[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987: 492-509. |
23 | Patterson M A, Reitz R D. Modeling the effects of fuel spray characteristics on diesel engine combustion and emission[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998: 27-43. |
24 | Vasu S S, Davidson D F, Hanson R K, et al. Shock tube study of syngas ignition in rich CO2 mixtures and determination of the rate of H+O2+CO2→HO2+CO2 [J]. Energy and Fuels, 2011, 25(3): 990-997. |
25 | 贺振宗, 朱瑞韩, 董川徽, 等. WSGSA模型在C2H4/空气湍流扩散火焰温度和烟尘预测中的应用[J]. 南京航空航天大学学报(英文版), 2022, 39(4): 482-492. |
He Z Z, Zhu R H, Dong C H, et al. Application of WSGSA model in predicting temperature and soot in C2H4/air turbulent diffusion flame[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2022, 39(4): 482-492. | |
26 | Masri A R, Dibble R W, Barlow R S. Chemical kinetic effects in nonpremixed flames of H2/CO2 fuel[J]. Combustion and Flame, 1992, 91(3/4): 285-309. |
27 | Zhou Y, Xie F, Yao M, et al. Investigation on stability and chemiluminescence characterization for liftoff inverse diffusion flames[J]. Combustion Science and Technology, 2021(2): 1-19. |
28 | Lu T, Chen F W. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. Journal of Molecular Graphics and Modelling, 2012, 38: 314-323. |
29 | 吴博, 黄静梦, 谭桂珍, 等. 基于密度泛函理论研究碱性水溶液中乙内酰脲及其衍生物的结构及性质[J]. 化学通报, 2021, 84(6): 610-619. |
Wu B, Huang J M, Tan G Z, et al. DFT study on the structure and properties of hydantoin and its derivatives in the alkaline aqueous solution[J]. Chemistry, 2021, 84(6): 610-619. | |
30 | 马志豪, 吕恩雨, 董永超, 等. 碳氢燃料在激波管内的裂解试验与动力学研究[J]. 内燃机学报, 2022, 40(5): 420-429. |
Ma Z H, Lyu E Y, Dong Y C, et al. Experiment and kinetic study on pyrolysis of hydrocarbon fuel in shock tube[J]. Transactions of CSICE, 2022, 40(5): 420-429. | |
31 | 罗振敏, 康凯. CO2抑制甲烷-空气链式爆炸微观机理的仿真分析[J]. 中国安全科学学报, 2015, 25(5): 42-48. |
Luo Z M, Kang K. Simulative analysis of microscopic mechanism of CO2 inhibiting methane-air chain explosion[J]. China Safety Science Journal, 2015, 25(5): 42-48. | |
32 | Alfazazi A, Kuti O A, Naser N, et al. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers [J]. Fuel, 2016, 185: 589-598. |
33 | Di H, He X, Zhang P, et al. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane [J]. Combustion and Flame, 2014, 161(10): 2531-2538. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[9] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[15] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||