化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2447-2457.DOI: 10.11949/0438-1157.20230196
王辰1(), 史秀锋2, 武鲜凤1, 魏方佳2, 张昊虹1, 车寅1, 吴旭2()
收稿日期:
2023-03-06
修回日期:
2023-06-13
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
吴旭
作者简介:
王辰(1998—),男,硕士研究生,2417775431@qq.com
基金资助:
Chen WANG1(), Xiufeng SHI2, Xianfeng WU1, Fangjia WEI2, Haohong ZHANG1, Yin CHE1, Xu WU2()
Received:
2023-03-06
Revised:
2023-06-13
Online:
2023-06-05
Published:
2023-07-27
Contact:
Xu WU
摘要:
在氧化还原法制备α-MnO2的基础上,通过控制焙烧温度和气氛制备了Mn3O4催化剂,系统考察了其甲苯催化性能。结果显示,Mn3O4催化性能优于MnO2,并且在230℃下保持转化率90%以上稳定运行100 h。原位红外等表征结果表明,与MnO2相比,Mn3O4具有适当的氧化还原能力、更高的晶格氧活性、更多的表面吸附氧和更强的甲苯吸附能力,促使催化剂表面苯甲酸物种的快速转化,进而提高其甲苯催化性能。本研究可为锰基催化剂的制备及其甲苯催化氧化性能提升机理研究提供参考。
中图分类号:
王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457.
Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene[J]. CIESC Journal, 2023, 74(6): 2447-2457.
Catalysts | SBET/ (cm2/g) | PV/ (cm3/g) | APD/ nm | Average grain size/nm | k(230℃)/(cm3/(g·s)) |
---|---|---|---|---|---|
MnO2 | 81 | 0.29 | 15 | 13.06 | 18.9 |
Mn3O4 | 93 | 0.33 | 15 | 8.29 | 26.8 |
表1 MnO2和Mn3O4的结构参数和反应速率常数k
Table 1 Textural parameters and reaction rate constant k of MnO2 and Mn3O4
Catalysts | SBET/ (cm2/g) | PV/ (cm3/g) | APD/ nm | Average grain size/nm | k(230℃)/(cm3/(g·s)) |
---|---|---|---|---|---|
MnO2 | 81 | 0.29 | 15 | 13.06 | 18.9 |
Mn3O4 | 93 | 0.33 | 15 | 8.29 | 26.8 |
Catalyst | O | Mn | ||||
---|---|---|---|---|---|---|
Oads/% | Olat/% | Oads/Olat | Mn2+/% | Mn3+/% | Mn4+/% | |
Mn3O4 | 37 | 63 | 0.59 | 39 | 35 | 26 |
MnO2 | 34 | 66 | 0.52 | 28 | 41 | 31 |
表2 MnO2 和Mn3O4由XPS分析测定的表面元素分析
Table 2 Surface elemental analysis of MnO2 and Mn3O4 determined by XPS analysis
Catalyst | O | Mn | ||||
---|---|---|---|---|---|---|
Oads/% | Olat/% | Oads/Olat | Mn2+/% | Mn3+/% | Mn4+/% | |
Mn3O4 | 37 | 63 | 0.59 | 39 | 35 | 26 |
MnO2 | 34 | 66 | 0.52 | 28 | 41 | 31 |
图13 MnO2催化剂甲苯吸附过程和甲苯-氧气反应过程的表面吸附物种原位DRIFTS谱图
Fig.13 In situ DRIFTS spectra of adsorption process of the toluene and toluene-air reaction process of MnO2
图14 Mn3O4催化剂甲苯吸附过程和甲苯-氧气反应过程的表面吸附物种原位DRIFTS谱图
Fig.14 In situ DRIFTS spectra of adsorption process of the toluene and toluene-air reaction process of Mn3O4
图15 MnO2和Mn3O4催化剂甲苯吸附和反应过程状态对比的表面吸附物种原位DRIFTS谱图
Fig.15 In situ DRIFTS spectra of surface adsorbed species for comparison of toluene adsorption and reaction process of MnO2 and Mn3O4
1 | Lyu X P, Guo H, Wang Y, et al. Hazardous volatile organic compounds in ambient air of China[J]. Chemosphere, 2020, 246: 125731. |
2 | Li J J, Weng B, Cai S C, et al. Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene[J]. Journal of Hazardous Materials, 2018, 342: 661-669. |
3 | 石秀娟, 梁文俊, 尹国彬, 等. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483. |
Shi X J, Liang W J, Yin G B, et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst[J]. CIESC Journal, 2022, 73(10): 4472-4483. | |
4 | Li J J, Yu E Q, Cai S C, et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light[J]. Applied Catalysis B: Environmental, 2019, 240: 141-152. |
5 | 孙静, 董一霖, 李法齐, 等. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
Sun J, Dong Y L, Li F Q, et al. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve[J]. CIESC Journal, 2021, 72(6): 3306-3315. | |
6 | 芮泽宝,杨晓庆,陈俊妃, 等. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958. |
Rui Z B, Yang X Q, Chen J F, et al. Photo-thermal synergistic catalysis for VOCs purification: current status and future perspectives [J]. CIESC Journal, 2018, 69(12): 4947-4958. | |
7 | Chlala D, Giraudon J M, Nuns N, et al. Highly active noble‐metal‐free copper hydroxyapatite catalysts for the total oxidation of toluene[J]. ChemCatChem, 2017, 9(12): 2275-2283. |
8 | Xie S H, Deng J G, Liu Y X, et al. Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au-Pd alloy nanoparticles for the complete oxidation of toluene[J]. Applied Catalysis A: General, 2015, 507:82-90. |
9 | Gan T, Chu X F, Qi H, et al. Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: promotional synergistic effect of Pt nanoparticles and Al2O3 support[J]. Applied Catalysis B: Environmental, 2019, 257: 117943. |
10 | Peng R S, Li S J, Sun X B, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2018, 220: 462-470. |
11 | Zhao L L, Zhang Z P, Li Y S, et al. Synthesis of Ce a MnO x hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion[J]. Applied Catalysis B: Environmental, 2019, 245: 502-512. |
12 | Yang Q L, Wang D, Wang C Z, et al. Promotion effect of Ga-Co spinel derived from layered double hydroxides for toluene oxidation[J]. ChemCatChem, 2018, 10(21): 4838-4843. |
13 | Chen J, Chen X, Xu W J, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chemical Engineering Journal, 2017, 330: 281-293. |
14 | Wang Y, Arandiyan H, Liu Y X, et al. Template-free scalable synthesis of flower-like Co3- x Mn x O4 spinel catalysts for toluene oxidation[J]. ChemCatChem, 2018, 10(16): 3429-3434. |
15 | Sihaib Z, Puleo F, Garcia-Vargas J M, et al. Manganese oxide-based catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2017, 209: 689-700. |
16 | Fan J, Ren Q M, Mo S P, et al. Transient in-situ DRIFTS investigation of catalytic oxidation of toluene over α-,γ- and β- MnO2 [J]. ChemCatChem, 2020, 12(4): 1046-1054. |
17 | Chen L Z, Liu Y J, Fang X, et al. Simple strategy for the construction of oxygen vacancies on α-MnO2 catalyst to improve toluene catalytic oxidation[J]. Journal of Hazardous Materials, 2021, 409: 125020. |
18 | 李治东, 万佳琪, 刘莹, 等. 一步法合成α-MnO2/β-MnO2催化剂及其对甲苯催化氧化的性能研究[J]. 化工学报, 2022, 73(8): 3615-3624. |
Li Z D, Wan J Q, Liu Y, et al. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene[J]. CIESC Journal, 2022, 73(8): 3615-3624. | |
19 | Liu Q, Cheng G, Sun M, et al. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion[J]. Chinese Journal of Chemical Engineering, 2022, 44: 392-401. |
20 | Piumetti M, Fino D, Russo N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2015, 163: 277-287. |
21 | Kim S C, Shim W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B: Environmental, 2010, 98(3/4): 180-185. |
22 | Wang P F, Wang J, An X W, et al. Generation of abundant defects in Mn-Co mixed oxides by a facile agar-gel method for highly efficient catalysis of total toluene oxidation[J]. Applied Catalysis B: Environmental, 2021, 282: 119560. |
23 | Xiong S C, Huang N, Peng Y, et al. Balance of activation and ring-breaking for toluene oxidation over CuO-MnO x bimetallic oxides[J]. Journal of Hazardous Materials, 2021, 415: 125637. |
24 | Sun Y H, Fan J, Cheng H R, et al. Investigation into the roles of different oxygen species in toluene oxidation over manganese-supported platinum catalysts[J]. Molecular Catalysis, 2021, 507:111569. |
25 | Zeng X H, Cheng G, Liu Q, et al. Novel ordered mesoporous γ‑MnO2 catalyst for high-performance catalytic oxidation of toluene and o‑xylene[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13926-13934. |
26 | Zhang X, Liu Y X, Deng J G, et al. Alloying of gold with palladium: an effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion[J]. Applied Catalysis B: Environmental, 2019, 257: 117879. |
27 | Yang W H, Su Z A, Xu Z H, et al. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Applied Catalysis B: Environmental, 2020, 260: 118150. |
28 | Dong C, Qu Z P, Qin Y, et al. Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques[J]. ACS Catalysis, 2019, 9(8): 6698-6710. |
29 | Sun H, Liu Z, Chen S, et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal, 2015, 270: 58-65. |
30 | Zhong J P, Zeng Y K, Chen D D, et al. Toluene oxidation over Co3+-rich spinel Co3O4: evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS[J]. Journal of Hazardous Materials, 2020, 386: 121957. |
31 | Zhao S, Hu F Y, Li J H. Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion[J]. ACS Catalysis, 2016, 6(6): 3433-3441. |
32 | Mo S P, Peng P, Pei Y C, et al. Immobilizing ultrafine bimetallic PtAg alloy onto uniform MnO2 microsphere as a highly active catalyst for CO oxidation[J]. Chinese Chemical Letters, 2021, 32(6): 2057-2060. |
33 | Mo S P, Zhang Q, Li J Q, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2020, 264: 118464. |
34 | Ma L, Seo C Y, Chen X Y, et al. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust[J]. Applied Catalysis B: Environmental, 2018, 222: 44-58. |
35 | Du J P, Qu Z P, Dong C, et al. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach[J]. Applied Surface Science, 2018, 433:1025-1035. |
[1] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[2] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[3] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[4] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
[5] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[6] | 钱庆玲, 朱晴, 杨正金, 徐铜文. 微孔Noria聚合物用于二甲苯异构体吸附分离研究[J]. 化工学报, 2022, 73(12): 5438-5448. |
[7] | 秦坤, 王章鸿, 张会岩. 聚乙烯与过渡金属介入对木质素热解过程中表面官能团演变的影响[J]. 化工学报, 2022, 73(11): 5201-5210. |
[8] | 黄俊, 刘羿良, 吴鹏, 沈凯, 张亚平. TiAl基羰基硫水解催化剂的中毒机制与抗氧性能研究[J]. 化工学报, 2022, 73(10): 4461-4471. |
[9] | 徐健元, 吴艳阳, 徐菊美, 彭阳峰. 2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟[J]. 化工学报, 2021, 72(9): 4504-4510. |
[10] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[11] | 孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
[12] | 叶志平, 周丹飞, 刘梓锋, 周青青, 王家德. 对甲基苯磺酸在Ti/PbO2电极上的电氧化反应信息[J]. 化工学报, 2021, 72(5): 2810-2816. |
[13] | 吕全明, 孙伟振, 赵玲. 连四甲苯液相氧化过程热力学分析及动力学模拟[J]. 化工学报, 2021, 72(2): 1009-1017. |
[14] | 殷梦凡, 唐政, 张睿, 刘植昌, 刘海燕, 徐春明, 孟祥海. 离子液体液液萃取分离正辛烷/邻二甲苯[J]. 化工学报, 2021, 72(12): 6282-6290. |
[15] | 梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||