| 1 |
Xu Y J, Shi Z, Shi X Y, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications[J]. Nanoscale, 2019, 11(31): 14491-14527.
|
| 2 |
Li C, Tian Z T. Thermal transport properties of black phosphorus: a topical review[J]. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(1): 45-57.
|
| 3 |
Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5: 4458.
|
| 4 |
Tran V, Soklaski R, Liang Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319.
|
| 5 |
Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475.
|
| 6 |
Zhu J, Park H, Chen J Y, et al. Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus[J]. Advanced Electronic Materials, 2016, 2(5): 1600040.
|
| 7 |
Miao J S, Cai L, Zhang S M, et al. Air-stable humidity sensor using few-layer black phosphorus[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 10019-10026.
|
| 8 |
Favron A, Gaufrès E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832.
|
| 9 |
Cui Y F, Duan S, Chen X, et al. Prediction of enhanced thermoelectric performance in two-dimensional black phosphorus nanosheets[J]. Vacuum, 2021, 183: 109790.
|
| 10 |
Sun B, Gu X K, Zeng Q S, et al. Temperature dependence of anisotropic thermal-conductivity tensor of bulk black phosphorus[J]. Advanced Materials, 2017, 29(3): 1603297.1-1603297.8.
|
| 11 |
Devi A, Singh A. Thermal properties of black phosphorene and doped phosphorene (C, N & O): a DFT study[C]//AIP Conference Proceedings, Mumbai, India, 2018, 1942(1): 090042.1-090042.4.
|
| 12 |
Hu W, Yang J L. Defects in phosphorene[J]. The Journal of Physical Chemistry C, 2015, 119(35): 20474-20480.
|
| 13 |
Zhao Y S, Zhang G, Nai M H, et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons[J]. Advanced Materials, 2018, 30(50): 1804928.
|
| 14 |
Qi P F, Liu K, Bi S P, et al. The abnormally excellent figure of merit of 14,14,18-graphyne at room temperature: a study on the thermoelectric characteristic of graphyne[J]. ACS Applied Energy Materials, 2022, 5(5): 6363-6372.
|
| 15 |
Wang V, Xu N, Liu J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.
|
| 16 |
Tao J M, Perdew J P, Staroverov V N, et al. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids[J]. Physical Review Letters, 2003, 91(14): 146401.
|
| 17 |
Baroni S, De Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562.
|
| 18 |
He X Y, Luo L S. Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation[J]. Physical Review E, 1997, 56(6): 6811-6817.
|
| 19 |
Li W, Carrete J, Katcho N A, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747-1758.
|
| 20 |
Madsen G K H, Carrete J, Verstraete M J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients[J]. Computer Physics Communications, 2018, 231: 140-145.
|
| 21 |
Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80.
|
| 22 |
Gao Y, Liu Q C, Xu B X. Lattice mismatch dominant yet mechanically tunable thermal conductivity in bilayer heterostructures[J]. ACS Nano, 2016, 10(5): 5431-5439.
|
| 23 |
Zhang F, Zheng X, Wang H M, et al. Anisotropy of thermal transport in phosphorene: a comparative first-principles study using different exchange–correlation functionals[J]. Materials Advances, 2022, 3(12): 5108-5117.
|
| 24 |
Liu T H, Chang C C. Anisotropic thermal transport in phosphorene: effects of crystal orientation[J]. Nanoscale, 2015, 7(24): 10648-10654.
|
| 25 |
Zhang X, Sun S, Xu T, et al. Temperature dependent Grüneisen parameter[J]. Science China Technological Sciences, 2019, 62(9): 1565-1576.
|
| 26 |
Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306.
|
| 27 |
Goldsmid H J, Sharp J W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements[J]. Journal of Electronic Materials, 1999, 28(7): 869-872.
|
| 28 |
Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
|
| 29 |
Hu R, Zhou Z Z, Sheng C Y, et al. Surprisingly good thermoelectric performance of a black phosphorus/blue phosphorus van der Waals heterostructure[J]. Physical Chemistry Chemical Physics, 2020, 22(39): 22390-22398.
|
| 30 |
Zhang J, Liu H J, Cheng L, et al. High thermoelectric performance can be achieved in black phosphorus[J]. Journal of Materials Chemistry C, 2016, 4(5): 991-998.
|