| [1] |
袁杰. 有机长余辉材料的设计、制备及性能研究[D]. 南京: 南京邮电大学, 2019.
|
|
Yuan J. Design, preparation and properties of organic long afterglow materials[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
|
| [2] |
Shen S, Xie Q S, Sahoo S R, et al. Edible long-afterglow photoluminescent materials for bioimaging[J]. Advanced Materials, 2024, 36(30): 2404888.
|
| [3] |
Wei X J, Ning H R, Huang X D, et al. Molten salt synthesis of persistent luminescent/magnetic Cr3+-doped zinc gallogermanate particles[J]. The Journal of Physical Chemistry C, 2023, 127(7): 3733-3741.
|
| [4] |
Xu S, Chen R F, Zheng C, et al. Excited state modulation for organic afterglow: materials and applications[J]. Advanced Materials, 2016, 28(45): 9920-9940.
|
| [5] |
Chang C K, Mao D L. Long lasting phosphorescence of Sr4Al14O25: Eu2+, Dy3+ thin films by magnetron sputtering[J]. Thin Solid Films, 2004, 460(1/2): 48-52.
|
| [6] |
Chen K, Wang X J, Yang G H, et al. Luminescent properties of Ca2GdZr2Al3O12:Mn4+ and Bi3+ codoped phosphors[J]. Acta Optica Sinica, 2019, 39(2): 0216001.
|
| [7] |
李杨. 近红外长余辉发光材料的设计、合成、性能与应用[D]. 广州: 华南理工大学, 2014.
|
|
Li, Design Y., synthesis, properties, and applications of near-infrared long persistent luminescence materials. [D]. Guangzhou: South China University of Technology, 2014.
|
| [8] |
Li X, Zhang H B, Zhang C Y, et al. Time-dependent photoluminescence patterns based on Cr3+-doped and Co-doped Zn3Ga2Ge2O10 [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418: 113403.
|
| [9] |
白琼宇, 王春浩. 植物补光用In3+掺杂Zn3Ga2Ge2O10∶Cr3+远红光发光材料的性能研究[J]. 人工晶体学报, 2024, 53(9): 1568-1575.
|
|
Bai Q Y, Wang C H. Performance of In3+ doped Zn3Ga2Ge2O10∶Cr3+ far-red light emitting materials for plant light supplement[J]. Journal of Synthetic Crystals, 2024, 53(9): 1568-1575.
|
| [10] |
Zhang S Y, Tang K Y, Fan H J, et al. A radioluminescence study of dose characteristics of Lif: Mg, Ti[J]. Radiation Protection Dosimetry, 2021, 195(2): 69-74.
|
| [11] |
张留伟. 近红外长余辉纳米材料的控制合成及生物应用[D]. 长沙: 湖南大学, 2022.
|
|
Zhang L W. Controlled synthesis and biological application of near infrared long afterglow nanomaterials[D]. Changsha: Hunan University, 2022.
|
| [12] |
Lv H Y, Liu Z C, Wang C, et al. Improved thermal stability of the near-infrared Al-modulated Zn3Ga2GeO8: Cr3+ phosphors for plant growth applications[J]. Journal of the American Ceramic Society, 2022, 105(2): 966-976.
|
| [13] |
Liu F, Liang Y J, Pan Z W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor[J]. Physical Review Letters, 2014, 113: 177401-1-177401-5.
|
| [14] |
郝先东, 邱宏菊, 桂雨曦, 等. 镧系锗酸盐合成及应用的研究进展[J]. 硅酸盐通报, 2021, 40(11): 3730-3739.
|
|
Hao X D, Qiu H J, Gui Y X, et al. Research progress on synthesis and application of lanthanide germanates[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3730-3739.
|
| [15] |
姜荣云. 面向精准医疗应用的近红外长余辉纳米探针的设计、制备及发光机理研究[D]. 长春: 东北师范大学, 2020.
|
|
Jiang R Y. Design, preparation and luminescence mechanism of near-infrared long afterglow nanoprobe for precision medical applications[D]. Changchun: Northeast Normal University, 2020.
|
| [16] |
Neto J M, Abritta T, Barros F D S, et al. A comparative study of the ptical properties of Fe3+ in ordered LiGa5O8 and LiAl5O8 [J]. Journal of Luminescence, 1981, 22(2): 109-120.
|
| [17] |
Wang X Y, Qiao H Y, Wang X M, et al. NIR photoluminescence of ZnGa2O4: Cr nanoparticles synthesized by hydrothermal process[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(24): 19129-19137.
|
| [18] |
Yang J, Liu Y X, Yan D T, et al. A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr3+ doped zinc gallogermanate nanoparticles for bio-imaging[J]. Dalton Transactions, 2016, 45(4): 1364-1372.
|
| [19] |
Pan Z W, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 2011, 11(1): 58-63.
|
| [20] |
Yang J, Jiang R Y, Meng Y Q, et al. NIR-Ⅰ/Ⅲ afterglow induced by energy transfers between Er and Cr codoped in ZGGO nanoparticles for potential bioimaging[J]. Journal of the American Ceramic Society, 2021, 104(9): 4637-4648.
|
| [21] |
Wang S, Yang J, Li Y Q, et al. The improved size distribution and NIR luminescence of ZGGO: Cr3+ nanoparticles induced by Y3+ doping[J]. Materials Research Bulletin, 2024, 169: 112507.
|
| [22] |
Abdukayum A, Chen J T, Zhao Q, et al. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J]. Journal of the American Chemical Society, 2013, 135(38): 14125-14133.
|
| [23] |
Kumar Rajwar B, Manam J, Kumar Sharma S. An attempt to enhance the afterglow luminescence of NIR light emitting long persistent phosphor Zn3Ga2Ge2O10: Cr3+ by Pr3+ co-doping[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 293: 122512.
|
| [24] |
刘宁. 表面修饰对稀土掺杂纳米发光材料发光性质影响的研究[D]. 长春: 吉林大学, 2011.
|
|
Liu N. Effect of surface modification n luminescence properties of rare earth doped nanoluminescent materials[D]. Changchun: Jilin University, 2011.
|
| [25] |
Castelli F, Forster L S. Fluorescence (4T2→4A2) and phosphorescence (2E→4A2) in MgO: Cr3+ [J]. Physical Review B, 1975, 11(2): 920.
|
| [26] |
Mikenda W, Preisinger A. N-lines in the luminescence spectra of Cr3+-doped spinels ( Ⅰ ) identification of N-lines[J]. Journal of Luminescence, 1981, 26(1/2): 53-66.
|
| [27] |
Mikenda W, Preisinger A. N-lines in the luminescence spectra of Cr3+-doped spinels ( Ⅱ ) rigins of N-lines[J]. Journal of Luminescence, 1981, 26(1/2): 67-83.
|
| [28] |
Hu Y, Yang Y M, Zhang X F, et al. X-ray-excited super-long green persistent luminescence from Tb3+ monodoped NaYF4[J]. The Journal of Physical Chemistry C, 2020, 124(45): 24940-24948.
|
| [29] |
Ding D D, Li S, Xu H, et al. X-ray-activated simultaneous near-infrared and short-wave infrared persistent luminescence imaging for long-term tracking of drug delivery[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16166-16172.
|
| [30] |
Homayoni H, Sahi S, Ma L, et al. X-ray excited luminescence and persistent luminescence of Sr2MgSi2O7: Eu2+, Dy3+ and their associations with synthesis conditions[J]. Journal of Luminescence, 2018, 198: 132-137.
|