化工学报 ›› 2025, Vol. 76 ›› Issue (5): 1909-1926.DOI: 10.11949/0438-1157.20241467
• 综述与专论 •
何燎(
), 李俊, 高梦舒, 刘东阳, 张宇豪, 赵亮(
), 高金森, 徐春明
收稿日期:2024-12-18
修回日期:2025-01-29
出版日期:2025-05-25
发布日期:2025-06-13
通讯作者:
赵亮
作者简介:何燎(1995—),女,博士研究生,heliao@zgsydxbj.wecom.work
基金资助:
Liao HE(
), Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO(
), Jinsen GAO, Chunming XU
Received:2024-12-18
Revised:2025-01-29
Online:2025-05-25
Published:2025-06-13
Contact:
Liang ZHAO
摘要:
在“双碳”目标推动下,精细化加工和节能降耗成为新趋势,“分子炼油”技术是炼油行业绿色创新和高质量发展的关键。从石油烃中高效分离芳烃,为芳烃按需加工提供优质原料,是实现“分子炼油”理念的重要技术途径。详细介绍了芳烃与非芳烃及芳烃组分间分离技术研究现状,进一步总结了芳烃分离技术选型策略,并提出了芳烃分离低碳工业化主要发展方向,从而实现芳烃高值化利用和化工行业可持续发展。
中图分类号:
何燎, 李俊, 高梦舒, 刘东阳, 张宇豪, 赵亮, 高金森, 徐春明. 石油烃中芳烃分离技术研究进展[J]. 化工学报, 2025, 76(5): 1909-1926.
Liao HE, Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on aromatic hydrocarbons separation from petroleum hydrocarbons[J]. CIESC Journal, 2025, 76(5): 1909-1926.
| 原料 | 溶剂 | 萃取温度/℃ | 萃取时间/min | 剂油比 | 芳烃纯度/% | 芳烃收率/% | 文献 |
|---|---|---|---|---|---|---|---|
| 糠醛抽出油 | 糠醛 | 70 | — | 3 | 76.8 | 58.6 | [ |
| 减二线糠醛抽出油 | 糠醛 | 60 | — | 2 | 80.6 | 52.3 | [ |
| 减四线糠醛抽出油 | 糠醛 | 70 | — | 3 | 76.8 | 55.1 | [ |
| 重质馏分糠醛抽出油 | 糠醛 | 60~90 | — | 1.5~2 | 78.7~84.8 | — | [ |
| 重质馏分糠醛抽出油 | 环丁砜 | 70 | — | 3 | 45.7 | — | [ |
| FCC柴油 | 环丁砜 | 50 | 5 | 1.5 | 93.71 | 29.29 | [ |
| FCC柴油 | 环丁砜 | 45 | 5 | 1.4 | 99.07 | 29.87 | [ |
表1 芳烃与非芳烃体系中单一有机溶剂萃取效果
Table 1 Extraction efficiency of aromatic and non-aromatic hydrocarbons with single organic solvent
| 原料 | 溶剂 | 萃取温度/℃ | 萃取时间/min | 剂油比 | 芳烃纯度/% | 芳烃收率/% | 文献 |
|---|---|---|---|---|---|---|---|
| 糠醛抽出油 | 糠醛 | 70 | — | 3 | 76.8 | 58.6 | [ |
| 减二线糠醛抽出油 | 糠醛 | 60 | — | 2 | 80.6 | 52.3 | [ |
| 减四线糠醛抽出油 | 糠醛 | 70 | — | 3 | 76.8 | 55.1 | [ |
| 重质馏分糠醛抽出油 | 糠醛 | 60~90 | — | 1.5~2 | 78.7~84.8 | — | [ |
| 重质馏分糠醛抽出油 | 环丁砜 | 70 | — | 3 | 45.7 | — | [ |
| FCC柴油 | 环丁砜 | 50 | 5 | 1.5 | 93.71 | 29.29 | [ |
| FCC柴油 | 环丁砜 | 45 | 5 | 1.4 | 99.07 | 29.87 | [ |
图2 芳烃与非芳烃体系中复配有机溶剂的芳烃去除率1#—环丁砜[37]; 2#—环丁砜/10%(质量分数)异丙醇[37]; 3#—环丁砜/10%(质量分数)乙二醇[37]; 4#—环丁砜/10%(质量分数)水[37]; 5#—二甲基甲酰胺[38]; 6#—二甲基甲酰胺/乙二醇[39]; 7#—N-甲基吡咯烷酮[38]; 8#—N-甲基吡咯烷酮/N,N-二甲基甲酰胺[38]; 9#—二甲基亚砜[40]; 10#—二甲基亚砜/10%N,N-二甲基甲酰胺[40]
Fig.2 Removal efficiency of aromatic and non-aromatic hydrocarbons by compounded organic solvents
图4 芳烃与非芳烃体系中咪唑类离子液体分离性能1#—1-ethyl-3-methylimidazolium methylsulfonate[47]; 2#—1-ethyl-3-methylimidazolium trifluoromethanesulfonate[47]; 3#—1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate[47]; 4#—1-butyl-3-methylimidazolium dicyanamide[48]; 5#—1-butyl-3-methylimidazolium thiocyanate[49]; 6#—N-benzyl-N-methylimidazoium bis(trifluoromethylsulfonyl)mide[50]; 7#—[C5(MIM)2][NTf2]2[51]; 8#—[C6(MIM)2][NTf2]2[51]; 9#—1-butyl-3-methylimidazolium tetrachloroferrate[52]; 10#—1-benzyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imide[51]; 11#—1-hexyl-3-methylimidazolium hexafluorophosphate[53]
Fig.4 Separation performance of imidazole ionic liquids with different aromatic and non-aromatic separation systems
| 原料 | 离子液体 | 温度/℃ | 芳烃分离性能 | 文献 | |
|---|---|---|---|---|---|
| 分配系数 | 选择性 | ||||
| 苯/正己烷 | methylpridinium ethylsulphate | 25 | 0.90 | 26.12 | [ |
| 正丁基苯/正癸烷 | 1-己基-4-甲基吡啶四氟硼酸盐 | 40 | 0.45 | 49.36 | [ |
| 四氢萘/正癸烷 | 1-己基-4-甲基吡啶四氟硼酸盐 | 40 | 0.75 | 90.03 | [ |
| 萘/正癸烷 | 1-己基-4-甲基吡啶四氟硼酸盐 | 40 | 5.08 | 778.50 | [ |
表2 芳烃与非芳烃体系中吡啶类离子液体萃取效果
Table 2 Extraction efficiency of pyridine ionic liquids for aromatic and non-aromatic hydrocarbons
| 原料 | 离子液体 | 温度/℃ | 芳烃分离性能 | 文献 | |
|---|---|---|---|---|---|
| 分配系数 | 选择性 | ||||
| 苯/正己烷 | methylpridinium ethylsulphate | 25 | 0.90 | 26.12 | [ |
| 正丁基苯/正癸烷 | 1-己基-4-甲基吡啶四氟硼酸盐 | 40 | 0.45 | 49.36 | [ |
| 四氢萘/正癸烷 | 1-己基-4-甲基吡啶四氟硼酸盐 | 40 | 0.75 | 90.03 | [ |
| 萘/正癸烷 | 1-己基-4-甲基吡啶四氟硼酸盐 | 40 | 5.08 | 778.50 | [ |
图5 甲苯/正庚烷体系中复配离子液体的分离性能1#—[bpy][BF4]/[4bpy][Tf2N][56]; 2#—[bpy][BF4] (0.7)/[4bmpy][Tf2N] (0.3)[57]; 3#—[emim][TCM] (0.8)/[emim][DCA] (0.2)[58]; 4#—[4bmpy][Tf2N](0.3)/[emim][CHF2CF2SO3](0.7)[59]; 5#—[4bmpy][Tf2N](0.5)/[emim][C2H5SO4](0.5)[60]
Fig.5 Separation performance of compounded ionic liquids in toluene/n-heptane system
图6 芳烃与非芳烃体系中低共熔溶剂分离性能1#—1-butyl-3-methylimidazolium bromide/N-formylmorpholine[68]; 2#—tetrabutylammonium bromide/sulfolane[69]; 3#—tetrabutylammonium bromide/triethylene glycol[69]; 4#—methyltriphenylphosphonium bromide/tetraethylene glycol[69]; 5#—methyltriphenylphosphonium bromide/1,2 propanediol[69]; 6#—choline chloride/triethylene glycol[69]; 7#—tetrahexylammonium bromide/ethylene glycol l[70]; 8#—tetrahexylammonium bromide/glycerol[70]; 9#—N-ethylpyridinium bromide/ N-formyl morpholin[71]; 10#—ethyltriphenylphosphonium iodide/ethylene glycol[72]; 11#—ethyltriphenylphosphonium iodide/sulfolane[72]; 12#—tetrabutylphosphonium bromide/ethylene glycol[73]; 13#—tetrabutylphosphonium bromide/sulfolane[73]; 14#—pyridine based ionic liquid/acetylpropionic acid[74]
Fig.6 Separation performance of low eutectic solvents for aromatic and non-aromatic hydrocarbons
图7 芳烃与非芳烃体系中萃取精馏的分离效果1#—N-甲基-2-吡咯烷酮[82]; 2#—苯酚[82]; 3#—环丁砜[82]; 4#— N-甲基吡咯烷酮[83]; 5#—二甲基亚砜[84]; 6#—85%(质量分数)环丁砜/15%(质量分数)甲基磺酰乙烷[85]
Fig.7 Effect of extractive distillation on the separation of aromatic and non-aromatic hydrocarbons
图9 芳烃与非芳烃体系中膜材料的分离性能1#—非对称聚丙烯腈/苯甲酮/聚乙二醇甲醚甲基丙烯酸酯接枝复合膜[96]; 2#—聚丙烯腈/甲基丙烯酸甲酯-甲基丙烯酸钾盐/十二烷基二甲基苄基氯化铵膜[102]; 3#—聚丙烯腈/聚乙二醇甲基丙烯酸酯接枝复合膜[103]; 4#—不对称聚丙烯腈/聚乙烯醇-氧化石墨烯[104]; 5#—Boltorn W3000“孔填充”陶瓷复合膜[105]; 6#—聚酰亚胺膜[106]; 7#—芳香族聚酰亚胺和聚苯并𫫇唑膜[107]; 8#—杂萘联苯聚芳醚腈酮/聚乙二醇甲基丙烯酸酯接枝复合膜[108]; 9#—[3-Mebupy][BF4]聚偏二氟乙烯支撑液膜[109]; 10#—聚己二酸乙二醇酯/聚氨酯脲膜[98]; 11#—聚己二酸乙二醇酯/聚氨酯酰亚胺膜[98]; 12#—海藻酸钠/羧甲基纤维素钠共混膜[110]
Fig.9 Membrane separation performance of different aromatic and non-aromatic separation systems
| 芳烃碳数 | 原料 | 分离技术 | 分离效率 | 文献 |
|---|---|---|---|---|
| C8 | 间/对二甲苯 | 常压低温结晶法 | 98%对二甲苯 | [ |
| 混合二甲苯 | 吸附分离 | 99.5%对二甲苯 | [ | |
| 间/对二甲苯 | 加压结晶法 | 99.5%对二甲苯 | [ | |
| 混合二甲苯 | 蒸馏冷冻结晶法 | 99.9%对二甲苯 | [ | |
| 对二甲苯/甲苯 | 熔融结晶 | 99.52%对二甲苯 | [ | |
| 混合二甲苯 | MFI沸石膜分离 | 对二甲苯/邻二甲苯分离因子为600 | [ | |
| C8芳烃异构体 | MIL-160膜分离 | 对二甲苯/邻二甲苯分离因子为38.5 | [ | |
| C8芳烃异构体 | 环糊精纳米薄膜分离 | 对二甲苯/邻二甲苯分离因子为6.1 | [ | |
| C8芳烃异构体 | 分子印迹聚合物膜分离 | 对二甲苯/邻二甲苯分离因子为4.24 | [ | |
| C8芳烃异构体 | MOF-5膜分离 | 对二甲苯/邻二甲苯分离因子为1.95 | [ | |
| C9 | 重整C9芳烃 | 偏三甲苯异构化-精馏 | >95%均三甲苯 | [ |
| 富集均三甲苯 | 烷基化-精馏 | >99%均三甲苯 | [ | |
| C9芳烃 | 烷基化-常规精馏 | >98%均三甲苯 | [ | |
| C9芳烃 | 萃取精馏-催促精馏 | >98%(质量分数)均三甲苯 | [ | |
| 重整C9芳烃 | 精馏 | >99%偏三甲苯 | [ | |
| 重整C9芳烃 | 精密分馏 | 98.5%偏三甲苯 | [ | |
| C9芳烃 | 双塔双效热集成精馏 | 98.51%(质量分数)偏三甲苯 | [ | |
| 重整C9芳烃 | 差压热耦合精馏 | 99%(质量分数)偏三甲苯 | [ | |
| C9芳烃 | 精密精馏-深冷结晶 | >91%连三甲苯 | [ | |
| C9芳烃 | 萃取精馏 | 99%(质量分数)连三甲苯 | [ | |
| C9芳烃 | 精密精馏-深冷结晶 | >96%茚满 | [ | |
| 重整C9芳烃 | 精密分馏 | >95%间/邻/对甲乙苯 | [ | |
| C10 | C10芳烃 | 精馏-萃取精馏 | ≥95%(质量分数)间二乙苯 | [ |
| C10芳烃 | 精馏-萃取精馏 | ≥90%(质量分数)对二乙苯 | [ | |
| C10芳烃 | 熔融结晶 | 99.06%(质量分数)均四甲苯 | [ | |
| 均四甲苯粗产品 | 熔融结晶 | 99%均四甲苯 | [ |
表3 C8、C9、C10单环芳烃分离研究
Table 3 Separation studies of C8, C9, C10 monocyclic aromatic hydrocarbons
| 芳烃碳数 | 原料 | 分离技术 | 分离效率 | 文献 |
|---|---|---|---|---|
| C8 | 间/对二甲苯 | 常压低温结晶法 | 98%对二甲苯 | [ |
| 混合二甲苯 | 吸附分离 | 99.5%对二甲苯 | [ | |
| 间/对二甲苯 | 加压结晶法 | 99.5%对二甲苯 | [ | |
| 混合二甲苯 | 蒸馏冷冻结晶法 | 99.9%对二甲苯 | [ | |
| 对二甲苯/甲苯 | 熔融结晶 | 99.52%对二甲苯 | [ | |
| 混合二甲苯 | MFI沸石膜分离 | 对二甲苯/邻二甲苯分离因子为600 | [ | |
| C8芳烃异构体 | MIL-160膜分离 | 对二甲苯/邻二甲苯分离因子为38.5 | [ | |
| C8芳烃异构体 | 环糊精纳米薄膜分离 | 对二甲苯/邻二甲苯分离因子为6.1 | [ | |
| C8芳烃异构体 | 分子印迹聚合物膜分离 | 对二甲苯/邻二甲苯分离因子为4.24 | [ | |
| C8芳烃异构体 | MOF-5膜分离 | 对二甲苯/邻二甲苯分离因子为1.95 | [ | |
| C9 | 重整C9芳烃 | 偏三甲苯异构化-精馏 | >95%均三甲苯 | [ |
| 富集均三甲苯 | 烷基化-精馏 | >99%均三甲苯 | [ | |
| C9芳烃 | 烷基化-常规精馏 | >98%均三甲苯 | [ | |
| C9芳烃 | 萃取精馏-催促精馏 | >98%(质量分数)均三甲苯 | [ | |
| 重整C9芳烃 | 精馏 | >99%偏三甲苯 | [ | |
| 重整C9芳烃 | 精密分馏 | 98.5%偏三甲苯 | [ | |
| C9芳烃 | 双塔双效热集成精馏 | 98.51%(质量分数)偏三甲苯 | [ | |
| 重整C9芳烃 | 差压热耦合精馏 | 99%(质量分数)偏三甲苯 | [ | |
| C9芳烃 | 精密精馏-深冷结晶 | >91%连三甲苯 | [ | |
| C9芳烃 | 萃取精馏 | 99%(质量分数)连三甲苯 | [ | |
| C9芳烃 | 精密精馏-深冷结晶 | >96%茚满 | [ | |
| 重整C9芳烃 | 精密分馏 | >95%间/邻/对甲乙苯 | [ | |
| C10 | C10芳烃 | 精馏-萃取精馏 | ≥95%(质量分数)间二乙苯 | [ |
| C10芳烃 | 精馏-萃取精馏 | ≥90%(质量分数)对二乙苯 | [ | |
| C10芳烃 | 熔融结晶 | 99.06%(质量分数)均四甲苯 | [ | |
| 均四甲苯粗产品 | 熔融结晶 | 99%均四甲苯 | [ |
| 分离技术 | 分离原理 | 分离效率 | 能耗 | 环境 影响 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
溶剂 萃取 | 溶剂对组分选择溶解性差异 | 高,尤其适用于不同极性的混合物 | 低 | 中等 | 操作简便,适用范围广,可选择性强 | 溶剂回收成本高 |
| 精馏 | 组分挥发度差异 | 中等,适用于沸点差异明显的混合物 | 高 | 中等 | 技术成熟,操作简单,适用范围广 | 设备投资高,能耗高,对热敏性物质不适用 |
萃取 蒸馏 | 增加组分间相对挥发度 | 高,适用于沸点相近的混合物 | 中等 | 中等 | 投资少,能耗低 | 溶剂回收成本高 |
萃取 精馏 | 增加组分间相对挥发度 | 高,适用于沸点相近的混合物和共沸物 | 中等 | 中等 | 操作灵活,能耗较低 | 溶剂回收成本高 |
吸附 分离 | 吸附剂对组分的吸附能力差异 | 高,尤其适用于气体和液体混合物 | 高 | 中等 | 操作简单,适用范围广,可选择性强 | 吸附剂再生困难,成本高,吸附容量有限 |
| 膜分离 | 膜的选择渗透性 | 中等,尤其适用于热敏感物质 | 低 | 低 | 低能耗,设备简单,操作灵活 | 膜成本高,易污染,需定期更换 |
结晶 分离 | 组分的凝固点差异 | 低,尤其适用于同分异构体和共沸物 | 低 | 低 | 工艺简单,能耗低 | 回收率低,连续工业化生产难 |
表4 不同芳烃分离技术对比
Table 4 Comparison of various aromatics separation technologies
| 分离技术 | 分离原理 | 分离效率 | 能耗 | 环境 影响 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
溶剂 萃取 | 溶剂对组分选择溶解性差异 | 高,尤其适用于不同极性的混合物 | 低 | 中等 | 操作简便,适用范围广,可选择性强 | 溶剂回收成本高 |
| 精馏 | 组分挥发度差异 | 中等,适用于沸点差异明显的混合物 | 高 | 中等 | 技术成熟,操作简单,适用范围广 | 设备投资高,能耗高,对热敏性物质不适用 |
萃取 蒸馏 | 增加组分间相对挥发度 | 高,适用于沸点相近的混合物 | 中等 | 中等 | 投资少,能耗低 | 溶剂回收成本高 |
萃取 精馏 | 增加组分间相对挥发度 | 高,适用于沸点相近的混合物和共沸物 | 中等 | 中等 | 操作灵活,能耗较低 | 溶剂回收成本高 |
吸附 分离 | 吸附剂对组分的吸附能力差异 | 高,尤其适用于气体和液体混合物 | 高 | 中等 | 操作简单,适用范围广,可选择性强 | 吸附剂再生困难,成本高,吸附容量有限 |
| 膜分离 | 膜的选择渗透性 | 中等,尤其适用于热敏感物质 | 低 | 低 | 低能耗,设备简单,操作灵活 | 膜成本高,易污染,需定期更换 |
结晶 分离 | 组分的凝固点差异 | 低,尤其适用于同分异构体和共沸物 | 低 | 低 | 工艺简单,能耗低 | 回收率低,连续工业化生产难 |
| 1 | 马力. 石化芳烃生产技术环境保护分析[J]. 中国资源综合利用, 2018, 36(3): 140-142. |
| Ma L. Environmental protection analysis of petrochemical aromatic hydrocarbon production technology[J]. China Resources Comprehensive Utilization, 2018, 36(3): 140-142. | |
| 2 | 米多, 王琦, 刘利国, 等. 芳烃主要产品生产及市场分析[J]. 化学工业, 2022, 40(4): 71-82. |
| Mi D, Wang Q, Liu L G, et al. Production and market analysis of major aromatic products[J]. Chemical Industry, 2022, 40(4): 71-82. | |
| 3 | Mochida I, Shimizu K, Korai Y, et al. Mesophase pitch catalytically prepared from anthracene with HF/BF3 [J]. Carbon, 1992, 30(1): 55-61. |
| 4 | 贾智杰, 林伯强. 国有企业、价格管制与经济稳定: 来自中国特色汽柴油市场的视角[J]. 中国人口·资源与环境, 2022, 32(7): 173-185. |
| Jia Z J, Lin B Q. State-owned enterprises, price regulation, and economic stability: from the perspective of gasoline and diesel markets with Chinese characteristics[J]. China Population, Resources and Environment, 2022, 32(7): 173-185. | |
| 5 | 王尤佳, 赵亮, 高金森, 等. 柴油烃类族组成分离技术研究进展[J]. 化工学报, 2024, 75(1): 20-32. |
| Wang Y J, Zhao L, Gao J S, et al. Research progress on separation technology of diesel hydrocarbon components[J]. CIESC Journal, 2024, 75(1): 20-32. | |
| 6 | 陈浩. 芳烃产业发展现状及趋势分析[J]. 炼油技术与工程, 2020, 50(7): 1-4. |
| Chen H. Analysis on the development status and trend of aromatics industry[J]. Petroleum Refinery Engineering, 2020, 50(7): 1-4. | |
| 7 | 田璐瑶, 王梓豪, 粟杨, 等. 基于深度学习的溶剂定量构效关系建模研究进展[J]. 化工学报, 2020, 71(10): 4462-4472. |
| Tian L Y, Wang Z H, Su Y, et al. Research advances in deep learning based quantitative structure-property relationship modeling of solvents[J]. CIESC Journal, 2020, 71(10): 4462-4472. | |
| 8 | 张旭东, 刘彦花, 申峻, 等. COSMO-RS模型在离子液体/低共熔溶剂筛选中的应用研究进展[J]. 化工学报, 2023, 74(11):4383-4396. |
| Zhang X D, Liu Y H, Shen J, et al. Recent progress on application of COSMO-RS model in screening of ionic liquids/deep eutectic solvents[J]. CIESC Journal, 2023, 74(11): 4383-4396. | |
| 9 | 张宇豪, 赵亮, 高金森, 等. 溶剂结构对萃取分离直馏柴油中不同环数芳烃的影响[J]. 中国科学(化学), 2023, 53(9): 1781-1791. |
| Zhang Y H, Zhao L, Gao J S, et al. Effect of solvent structure on separation of different ring aromatics from straight-run diesel[J]. Scientia Sinica Chimica, 2023, 53(9): 1781-1791. | |
| 10 | Liu Q H, Zhu R S, Zhao F, et al. Solute structure effect on polycyclic aromatics separation from fuel oil: molecular mechanism and experimental insights[J]. AIChE Journal, 2024, 70(11): e18574. |
| 11 | Bei P Z, Rajendran A, Feng J, et al. Deciphering the intermolecular interactions for separating bicyclic and tricyclic aromatics via different naphthalene-based solvents[J]. Frontiers of Chemical Science and Engineering, 2024, 18(10): 111. |
| 12 | 唐坤, 刘奇磊, 张磊, 等. 基于高阶基团贡献法与COSMO-SAC模型的溶剂设计方法[J]. 化工进展, 2021, 40(S2): 48-55. |
| Tang K, Liu Q L, Zhang L, et al. Solvent design method based on higher-order group contribution method and COSMO-SAC model[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 48-55. | |
| 13 | 庄志海, 张建强, 刘殿华. 聚甲氧基二甲醚+水+正己烷三元体系的液液相平衡[J]. 化工学报, 2016, 67(9): 3545-3551. |
| Zhuang Z H, Zhang J Q, Liu D H. Liquid-liquid equilibria for ternary systems polyoxymethylene dimethyl ethers + water + n-hexane[J]. CIESC Journal, 2016, 67(9): 3545-3551. | |
| 14 | Hadj-Kali M K, Salleh Z, Ali E, et al. Separation of aromatic and aliphatic hydrocarbons using deep eutectic solvents: a critical review[J]. Fluid Phase Equilibria, 2017, 448: 152-167. |
| 15 | Liu Q H, Li G X, Gui C M, et al. Solvents evaluation for extraction of polycyclic aromatics from FCC diesel: experimental and computational thermodynamics[J]. Chemical Engineering Science, 2022, 264: 118205. |
| 16 | Brijmohan N, Moodley K, Narasigadu C. Identification and screening of potential organic solvents for the liquid-liquid extraction of aromatics[J]. Organic Process Research & Development, 2021, 25(10): 2230-2248. |
| 17 | 陈利维, 张天嵌. 芳烃抽提技术研究进展和应用现状[J]. 石油化工应用, 2017, 36(1): 7-10. |
| Chen L W, Zhang T Q. Research progress and application status of aromatics extraction technology[J]. Petrochemical Industry Application, 2017, 36(1): 7-10. | |
| 18 | 霍月洋. 芳烃抽提技术应用进展[J]. 山东化工, 2015, 44(4): 41-43, 46. |
| Huo Y Y. Application progress of aromatics extraction technologies[J]. Shandong Chemical Industry, 2015, 44(4): 41-43, 46. | |
| 19 | 赛买提江·艾山. 几种芳烃抽提工艺对比[J]. 建筑工程技术与设计, 2016(22): 2855. |
| Smtjiang A. Comparison of several aromatics extraction processes[J]. Architectural Engineering Technology and Design, 2016(22): 2855. | |
| 20 | 黄灏, 郑军, 朱士荣. 糠醛精制工艺过程用能分析和节能优化[J]. 石油学报(石油加工), 2010, 26(S1): 66-70. |
| Huang H, Zheng J, Zhu S R. Analysis and optimization about energy of furfural refining process[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(S1): 66-70. | |
| 21 | 李东胜, 张毅, 宋毅, 等. 润滑油基础油糠醛精制工艺加助剂脱氮小试研究[J]. 石油化工高等学校学报, 2011, 24(1): 41-43, 92. |
| Li D S, Zhang Y, Song Y, et al. Denitrogeneration of furfural refining process of lube base oil into which the assistant is added [J]. Journal of Petrochemical Universities, 2011, 24(1): 41-43, 92. | |
| 22 | 韩镇, 杨鹏. 润滑油糠醛精制装置工艺参数优化对能耗的影响[J]. 润滑油, 2020, 35(2): 62-64. |
| Han Z, Yang P. Effect of process parameter optimization on energy consumption of lubricating oil furfural refining unit[J]. Lubricating Oil, 2020, 35(2): 62-64. | |
| 23 | 苏玉忠, 杨海兰, 李军, 等. 阿曼渣油丙烷脱沥青试验研究[J]. 厦门大学学报(自然科学版), 2004, 43(1): 84-88. |
| Su Y Z, Yang H L, Li J, et al. Study on deasphalting by propane for Oman residue oil[J]. Journal of Xiamen University (Natural Science), 2004, 43(1): 84-88. | |
| 24 | 彭乔毅, 王公炎, 刘晓伟. 丙烷脱沥青装置溶剂脱硫系统改造及运行效果分析[J]. 山东化工, 2019, 48(12): 86-88. |
| Peng Q Y, Wang G Y, Liu X W. Modification of solvent desulfurization system in propane deasphalting unit and analysis of operation effect[J]. Shandong Chemical Industry, 2019, 48(12): 86-88. | |
| 25 | 李俊, 赵亮, 高金森, 等. 不同馏分油分级分质加工中萃取技术研究进展[J]. 化工学报, 2024, 75(4): 1065-1080. |
| Li J, Zhao L, Gao J S, et al. Research progress of extraction technology in processing different distillate by grade and composition[J]. CIESC Journal, 2024, 75(4): 1065-1080. | |
| 26 | 姜华, 郑英峨, 时钧. 二甲基甲酰胺-苯-正庚烷三元体系的液液平衡[J]. 高校化学工程学报, 1993, 7(2): 96-100. |
| Jiang H, Zheng Y E, Shi J. Liquid-liquid equilibrium of DMF∶ benzene: n-heptane ternary system[J]. Journal of Chemical Engineering of Chinese Universities, 1993, 7(2): 96-100. | |
| 27 | 李永锐. DMF+NH4SCN液液萃取分离苯和正庚烷[D]. 哈尔滨: 哈尔滨工程大学, 2013. |
| Li Y R. Separation of benzene and n-heptane by DMF+NH4SCN liquid-liquid extraction[D]. Harbin: Harbin Engineering University, 2013. | |
| 28 | 王峰, 赵德智, 宋荣君. 催化裂化油浆糠醛分离及应用[J]. 辽宁石油化工大学学报, 2005, 25(1): 40-44. |
| Wang F, Zhao D Z, Song R J. Separation of catalytic cracking slurry oil with furfural and application[J]. Journal of Liaoning Petrochemical University, 2005, 25(1): 40-44. | |
| 29 | 袁萍, 翁惠新. 溶剂抽提偏三甲苯-正辛烷三元体系液-液相平衡的对比分析[J]. 上海化工, 2006, 31(12): 14-18. |
| Yuan P, Weng H X. Contrasting analysis on liquid-liquid equilibrium data of solvents extracting ternary systems 1,2,4-trimethylebenzene-n-octane[J]. Shanghai Chemical Industry, 2006, 31(12): 14-18. | |
| 30 | 袁倩, 陈冰, 公茂柱, 等. 重石脑油萃取脱芳烃技术基础研究[J]. 应用化工, 2015, 44(S1): 69-72. |
| Yuan Q, Chen B, Gong M Z, et al. Basic research on extraction and dearomatization of heavy naphtha[J]. Applied Chemical Industry, 2015, 44(S1): 69-72. | |
| 31 | 曹群, 陈海丽, 刘井杰, 等. 润滑油抽出油糠醛精制生产橡胶填充油的研究[J]. 当代化工, 2010, 39(4): 363-365, 368. |
| Cao Q, Chen H L, Liu J J, et al. Preparation of rubber packing oil from extract oil of lubricating oil by furfural refining technique[J]. Contemporary Chemical Industry, 2010, 39(4): 363-365, 368. | |
| 32 | 刘井杰, 王海超, 刘玲爽, 等. 糠醛抽出油生产芳烃溶剂油的研究[J]. 石油与天然气化工, 2010, 39(1): 43-46, 97. |
| Liu J J, Wang H C, Liu L S, et al. Study on aromatic solvent naphtha refined from furfural extract oil[J]. Chemical Engineering of Oil & Gas, 2010, 39(1): 43-46, 97. | |
| 33 | 熊良铨, 吕贞, 刘亚娟, 等. 溶剂萃取脱除橡胶油中多环芳烃试验探讨[J]. 润滑油, 2011, 26(1): 56-60. |
| Xiong L Q, Lyu Z, Liu Y J, et al. Study on the removal of polycyclic aromatic hydrocarbon from rubber oil with solvent extraction[J]. Lubricating Oil, 2011, 26(1): 56-60. | |
| 34 | 唐晓东, 杨谨, 仝保田, 等. 催化裂化柴油萃取脱芳烃技术研究[J]. 石油炼制与化工, 2020, 51(8): 12-18. |
| Tang X D, Yang J, Tong B T, et al. Study on aromatics removal from FCC diesel by extraction[J]. Petroleum Processing and Petrochemicals, 2020, 51(8): 12-18. | |
| 35 | 唐晓东, 李小雨, 杨谨, 等. 分离多环芳烃用于超稠油掺稀降黏的研究[J]. 石油炼制与化工, 2024, 55(3): 55-60. |
| Tang X D, Li X Y, Yang J, et al. Study on separated polycyclic aromatic hydrocarbons for thinning and viscosity reduction of ultra- heavy oil[J]. Petroleum Processing and Petrochemicals, 2024, 55(3): 55-60. | |
| 36 | Gaile A A, Zalishchevskii G D, Erzhenkov A S, et al. Extraction of aromatic hydrocarbons from reformates with mixtures of triethylene glycol and sulfolane[J]. Russian Journal of Applied Chemistry, 2007, 80(4): 591-594. |
| 37 | Mahmoudi J, Lotfollahi M N. Extraction of benzene from a narrow cut of naphtha via liquid-liquid extraction using pure-sulfolane and 2-propanol-sulfolane-mixed solvents[J]. Korean Journal of Chemical Engineering, 2010, 27(1): 214-217. |
| 38 | 史云鹤, 李长明, 周金波, 等. 离心萃取法优选直馏石脑油脱芳烃萃取剂[J]. 应用化工, 2015, 44(5): 899-902. |
| Shi Y H, Li C M, Zhou J B, et al. Dearomatization effect study of composite extractant NMP-DMF to straight-run naphtha[J]. Applied Chemical Industry, 2015, 44(5): 899-902. | |
| 39 | Radwan G M, Al-Muhtaseb S A, Fahim M A. Liquid-liquid equilibria for the extraction of aromatics from naphtha reformate by dimethylformamide/ethylene glycol mixed solvent[J]. Fluid Phase Equilibria, 1997, 129(1/2): 175-186. |
| 40 | 薛凤凤, 李冬, 张琳娜, 等. 煤基石脑油萃取脱芳复合萃取剂[J]. 化工进展, 2017, 36(8): 2897-2902. |
| Xue F F, Li D, Zhang L N, et al. Composite extractant of liquid-liquid extraction aromatics for the coal-derived naphtha[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2897-2902. | |
| 41 | Sherwood J, De bruyn M, Constantinou A, et al. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents[J]. Chemical Communications, 2014, 50(68): 9650-9652. |
| 42 | Brouwer T, Schuur B. Bio-based solvents as entrainers for extractive distillation in aromatic/aliphatic and olefin/paraffin separation[J]. Green Chemistry, 2020, 22(16): 5369-5375. |
| 43 | 李欣宇. 含氮杂环类功能化溶剂萃取分离柴油中芳烃/烷烃的研究[D]. 北京: 北京化工大学, 2023. |
| Li X Y. Study on extraction and separation of aromatic hydrocarbons/alkanes from diesel oil with nitrogen-containing heterocyclic functionalized solvents[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| 44 | 张锁江, 徐春明, 吕兴梅, 等. 离子液体与绿色化学[M]. 北京: 科学出版社, 2017. |
| Zhang S J, Xu C M, Lyu X M, et al. Ionic Liquids and Green Chemistry[M]. Beijing: Science Press, 2017. | |
| 45 | 史云鹤. 石脑油脱芳烃工艺技术研究[D]. 兰州: 兰州交通大学, 2015. |
| Shi Y H. Study on dearomatization technology of naphtha[D]. Lanzhou: Lanzhou Jiatong University, 2015. | |
| 46 | 王均凤, 张锁江, 陈慧萍, 等. 离子液体的性质及其在催化反应中的应用[J]. 过程工程学报, 2003, 3(2): 177-185. |
| Wang J F, Zhang S J, Chen H P, et al. Properties of ionic liquids and its applications in catalytic reactions[J]. The Chinese Journal of Process Engineering, 2003, 3(2): 177-185. | |
| 47 | García S, García J, Larriba M, et al. Sulfonate-based ionic liquids in the liquid-liquid extraction of aromatic hydrocarbons[J]. Journal of Chemical & Engineering Data, 2011, 56(7): 3188-3193. |
| 48 | Larriba M, Navarro P, García J, et al. Liquid-liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2714-2720. |
| 49 | Larriba M, Navarro P, García J, et al. Selective extraction of toluene from n-heptane using [emim][SCN] and [bmim][SCN] ionic liquids as solvents[J]. The Journal of Chemical Thermodynamics, 2014, 79: 266-271. |
| 50 | Larriba M, Navarro P, Delgado-Mellado N, et al. Extraction of aromatic hydrocarbons from pyrolysis gasoline using tetrathiocyanatocobaltate-based ionic liquids: experimental study and simulation[J]. Fuel Processing Technology, 2017, 159: 96-110. |
| 51 | Yao C F, Hou Y C, Wu W Z, et al. Imidazolium-based dicationic ionic liquids: highly efficient extractants for separating aromatics from aliphatics[J]. Green Chemistry, 2018, 20(13): 3101-3111. |
| 52 | Sakal S A, Lu Y Z, Jiang X C, et al. A promising ionic liquid [BMIM][FeCl4] for the extractive separation of aromatic and aliphatic hydrocarbons[J]. Journal of Chemical & Engineering Data, 2014, 59(3): 533-539. |
| 53 | Zhou T, Wang Z Y, Chen L F, et al. Evaluation of the ionic liquids 1-alkyl-3-methylimidazolium hexafluorophosphate as a solvent for the extraction of benzene from cyclohexane: (liquid+liquid) equilibria[J]. The Journal of Chemical Thermodynamics, 2012, 48: 145-149. |
| 54 | González E J, Calvar N, González B, et al. (Liquid+liquid) equilibria for ternary mixtures of (alkane+ benzene+[EMpy][ESO4]) at several temperatures and atmospheric pressure[J]. The Journal of Chemical Thermodynamics, 2009, 41(11): 1215-1221. |
| 55 | 史军军, 吴巍, 葸雷. 离子液体1-己基-4-甲基吡啶四氟硼酸盐与烃类的相互作用规律[J]. 石油学报(石油加工), 2021, 37(3): 541-548. |
| Shi J J, Wu W, Xi L. Interaction mechanism between [C6MPy][BF4] ionic liquid and hydrocarbons[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 541-548. | |
| 56 | García S, Larriba M, García J, et al. Separation of toluene from n-heptane by liquid-liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent[J]. The Journal of Chemical Thermodynamics, 2012, 53: 119-124. |
| 57 | García S, Larriba M, García J, et al. Liquid-liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids[J]. Chemical Engineering Journal, 2012, 180: 210-215. |
| 58 | Larriba M, Navarro P, García J, et al. Liquid-liquid extraction of toluene from n-heptane by {[emim][TCM]+[emim][DCA]}binary ionic liquid mixtures[J]. Fluid Phase Equilibria, 2014, 364: 48-54. |
| 59 | García S, García J, Larriba M, et al. Liquid-liquid extraction of toluene from heptane by {[4bmpy][Tf2N]+[emim][CHF2CF2SO3]} ionic liquid mixed solvents[J]. Fluid Phase Equilibria, 2013, 337: 47-52. |
| 60 | García S, Larriba M, Casas A, et al. Separation of toluene and heptane by liquid-liquid extraction using binary mixtures of the ionic liquids 1-butyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate[J]. Journal of Chemical & Engineering Data, 2012, 57(9): 2472-2478. |
| 61 | Hou Y C, Li Z Y, Ren S H, et al. Separation of toluene from toluene/alkane mixtures with phosphonium salt based deep eutectic solvents[J]. Fuel Processing Technology, 2015, 135: 99-104. |
| 62 | Pena-Pereira F, Namieśnik J. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes[J]. ChemSusChem, 2014, 7(7): 1784-1800. |
| 63 | Kareem M A, Mjalli F S, Ali Hashim M, et al. Phosphonium-based ionic liquids analogues and their physical properties[J]. Journal of Chemical & Engineering Data, 2010, 55(11): 4632-4637. |
| 64 | Prof A A, Barron J, Dr K R, et al. Eutectic-based ionic liquids with metal-containing anions and cations[J]. Chemistry-A European Journal, 2007, 13(22): 6495-6501. |
| 65 | 赵地顺, 王娜, 李雪刚. 配位离子液体[3(CH3CH2)4N+Cl-·(NH2)2CO]的合成及表征[J]. 化工学报, 2007, 58(6): 1457-1460. |
| Zhao D S, Wang N, Li X G. Synthesis and characteristics of coordinated ionic liquid [3(CH3CH2)4N+Cl-·(NH2)2CO][J]. Journal of Chemical Industry and Engineering (China), 2007, 58(6): 1457-1460. | |
| 66 | Wang Y, Hou Y C, Wu W Z, et al. Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents[J]. Green Chemistry, 2016, 18(10): 3089-3097. |
| 67 | Rodriguez N R, Gerlach T, Scheepers D, et al. Experimental determination of the LLE data of systems consisting of {hexane+benzene+deep eutectic solvent} and prediction using the conductor-like screening model for real solvents[J]. The Journal of Chemical Thermodynamics, 2017, 104: 128-137. |
| 68 | 冯善花. 低共熔溶剂的制备及在芳烃烷烃体系分离中的基础研究[D]. 北京: 北京化工大学, 2019. |
| Feng S H. Preparation of deep eutectic solvents and its basic research on separation of aromatic hydrocarbons and alkanes[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
| 69 | Salleh Z, Wazeer I, Mulyono S, et al. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents-COSMO-RS screening and experimental validation[J]. The Journal of Chemical Thermodynamics, 2017, 104: 33-44. |
| 70 | Rodriguez N R, Requejo P F, Kroon M C. Aliphatic-aromatic separation using deep eutectic solvents as extracting agents[J]. Industrial & Engineering Chemistry Research, 2015, 54(45): 11404-11412. |
| 71 | Feng S H, Sun J J, Ren Z Q, et al. Effective separation of aromatic hydrocarbons by pyridine-based deep eutectic solvents[J]. The Canadian Journal of Chemical Engineering, 2019, 97(12): 3138-3147. |
| 72 | Kareem M A, Mjalli F S, Ali Hashim M, et al. Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha[J]. The Journal of Chemical Thermodynamics, 2013, 65: 138-149. |
| 73 | Kareem M A, Mjalli F S, Ali Hashim M, et al. Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha[J]. Fluid Phase Equilibria, 2012, 333: 47-54. |
| 74 | 吴小佳. 离子液体基低共熔溶剂用于萃取分离芳烃烷烃的基础研究[D]. 北京: 北京化工大学, 2022. |
| Wu X J. Basic study on extraction and separation of aromatic alkanes by ionic liquid-based deep eutectic solvents[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
| 75 | 张曾, 阚一群, 刘峰, 等. 从乙烯焦油中提取萘、 1-甲基萘和2-甲基萘的方法: 102134500B[P]. 2013-05-15. |
| Zhang Z, Kan Y Q, Liu F, et al. Method for extracting naphthalene, 1-methylnaphthalene and 2-methylnaphthalene from ethylene tar: 102134500B[P]. 2013-05-15. | |
| 76 | Kiss A A. Distillation technology—still young and full of breakthrough opportunities[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498. |
| 77 | 杨晨阳, 朱怀工, 蔡旺锋, 等. 循环精馏技术研究进展[J]. 化工进展, 2024, 43(3): 1109-1117. |
| Yang C Y, Zhu H G, Cai W F, et al. Research progress of cyclic distillation technology[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1109-1117. | |
| 78 | 宁亚中. 抽提蒸馏分离芳烃工艺NFM分解原因分析及对策[J]. 石油化工设计, 2012, 29(4): 10-12, 15, 5. |
| Ning Y Z. Cause analysis of NFM solvent decomposition and the improvement measures[J]. Petrochemical Design, 2012, 29(4): 10-12, 15, 5. | |
| 79 | 田胜利. 环丁砜抽提蒸馏工艺分离芳烃与非芳烃影响因素的分析[J]. 辽宁化工, 2014, 43(6): 705-707. |
| Tian S L. Analysis of influencing factors for sulfolane extraction distillation separation of aromatic and nonaromatic hydrocarbons[J]. Liaoning Chemical Industry, 2014, 43(6): 705-707. | |
| 80 | 赵明, 蹇中立, 田龙胜, 等. 芳烃抽提蒸馏工艺(SED-BTX)的开发与应用[J]. 石油炼制与化工, 2024, 55(5): 14-19. |
| Zhao M, Jian Z L, Tian L S, et al. Development and application of aromatics extraction and distillation process (SED-BTX)[J]. Petroleum Processing and Petrochemicals, 2024, 55(5): 14-19. | |
| 81 | Lotkhov V A, Kvashnin S Y, Kulov N N. Effect of separating agent in extractive distillation[J]. Theoretical Foundations of Chemical Engineering, 2020, 54(1): 172-177. |
| 82 | Perkar T, Choksi N, Modi C, et al. Simulation studies of n-heptane/toluene separation by extractive distillation using sulfolane, phenol, and NMP[J]. International Journal of Chemical Reactor Engineering, 2021, 19(8): 829-837. |
| 83 | 雷志刚, 周荣琪, 段占庭. NMP萃取精馏分离芳烃和非芳烃[J]. 高校化学工程学报, 2001, 15(2): 183-186. |
| Lei Z G, Zhou R Q, Duan Z T. Separation of aromatic and non-aromatic hydrocarbons by NMP extractive distillation[J]. Journal of Chemical Engineering of Chinese Universities, 2001, 15(2): 183-186. | |
| 84 | Li L M, Guo L J, Tu Y Q, et al. Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation: design and control[J]. Comput. Chem. Eng., 2017, 99: 117-134. |
| 85 | Gao S L, Tang W C, Zhao M, et al. Extractive distillation of benzene, toluene, and xylenes from pyrolysis gasoline using methylsulfonylethane as a cosolvent[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(3): e2609. |
| 86 | Ghiaci M, Abbaspur A, Kia R, et al. Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41[J]. Separation and Purification Technology, 2004, 40(3): 217-229. |
| 87 | Simpson E J, Abukhadra R K, Koros W J, et al. Sorption equilibrium isotherms for volatile organics in aqueous solution. Comparison of head-space gas chromatography and on-line UV stirred cell results[J]. Industrial & Engineering Chemistry Research, 1993, 32(10): 2269-2276. |
| 88 | Herm Z R, Bloch E D, Long J R. Hydrocarbon separations in metal-organic frameworks[J]. Chemistry of Materials, 2014, 26(1): 323-338. |
| 89 | Wang C M, Chang K S, Chung T W, et al. Adsorption equilibria of aromatic compounds on activated carbon, silica gel, and 13X zeolite[J]. Journal of Chemical & Engineering Data, 2004, 49(3): 527-531. |
| 90 | Sapianik A A, Kovalenko K A, Samsonenko D G, et al. Exceptionally effective benzene/cyclohexane separation using a nitro-decorated metal-organic framework[J]. Chemical Communications, 2020, 56(59): 8241-8244. |
| 91 | Macreadie L K, Qazvini O T, Babarao R. Reversing benzene/cyclohexane selectivity through varying supramolecular interactions using aliphatic, isoreticular MOFs[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30885-30890. |
| 92 | Mukherjee S, Sensharma D, Qazvini O T, et al. Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents[J]. Coordination Chemistry Reviews, 2021, 437: 213852. |
| 93 | 赵闯, 陈自浩, 张博宇, 等. 分子筛吸附剂对不同类型柴油吸附分离性能的研究[J]. 无机盐工业, 2024, 56(3): 80-85. |
| Zhao C, Chen Z H, Zhang B Y, et al. Study on adsorption and separation performance of molecular sieve adsorbents for different types of diesel[J]. Inorganic Chemicals Industry, 2024, 56(3): 80-85. | |
| 94 | 赵闯, 张博宇, 李犇, 等. 吸附剂对多环芳烃吸附分离技术的研究[J]. 无机盐工业, 2024, 56(7): 61-68. |
| Zhao C, Zhang B Y, Li B, et al. Study on adsorption and separation technology of polycyclic aromatic hydrocarbons by adsorbent[J]. Inorganic Chemicals Industry, 2024, 56(7): 61-68. | |
| 95 | 党宇. 多环芳烃在γ-Al2O3上吸附和扩散的分子模拟[D]. 东营: 中国石油大学(华东), 2019. |
| Dang Y. Molecular simulation of adsorption and diffusion of polycyclic aromatic hydrocarbons on γ-Al2O3 [D]. Dongying: China University of Petroleum (Huadong), 2019. | |
| 96 | 李战胜, 郭春刚, 张犇, 等. 芳烃优先透过的渗透汽化复合膜的制备及分离性能研究[J]. 化学工业与工程, 2010, 27(2): 177-182. |
| Li Z S, Guo C G, Zhang B, et al. Preparation of aromatic-selective composite membranes and their pervaporation performances[J]. Chemical Industry and Engineering, 2010, 27(2): 177-182. | |
| 97 | 陈艳. 膜分离技术在石油化工领域中的应用探析[J]. 中国战略新兴产业, 2024(2): 119-121. |
| Chen Y. Application of membrane separation technology in petrochemical industry[J]. China Strategic Emerging Industry, 2024(2): 119-121. | |
| 98 | 叶宏, 李继定, 林阳政, 等. 聚氨酯脲和聚氨酯酰亚胺膜的制备与渗透汽化芳烃/烷烃分离性能研究[J]. 膜科学与技术, 2009, 29(2): 40-46. |
| Ye H, Li J D, Lin Y Z, et al. Preparation of polyurethaneurea and polyurethaneimide membranes and their pervaporation performances to aromatic/aliphatic hydrocarbon mixtures[J]. Membrane Science and Technology, 2009, 29(2): 40-46. | |
| 99 | Shao P, Huang R Y M. Polymeric membrane pervaporation[J]. Journal of Membrane Science, 2007, 287(2): 162-179. |
| 100 | Inui K, Tsukamoto K, Miyata T, et al. Permeation and separation of a benzene/cyclohexane mixture through benzoylchitosan membranes[J]. Journal of Membrane Science, 1998, 138(1): 67-75. |
| 101 | Sun H, Wang N X, Xu Y H, et al. Aromatic-aliphatic hydrocarbon separation with oriented monolayer polyhedral membrane[J]. Science, 2024, 386(6725): 1037-1042. |
| 102 | Schwarz H, Malsch G. Polyelectrolyte membranes for aromatic-aliphatic hydrocarbon separation by pervaporation[J]. Journal of Membrane Science, 2005, 247(1/2): 143-152. |
| 103 | Li Z S, Zhang B, Qu L X, et al. A novel atmospheric dielectric barrier discharge (DBD) plasma graft-filling technique to fabricate the composite membranes for pervaporation of aromatic/aliphatic hydrocarbons[J]. Journal of Membrane Science, 2011, 371(1/2): 163-170. |
| 104 | Wang N X, Ji S L, Li J, et al. Poly(vinyl alcohol)-graphene oxide nanohybrid "pore-filling" membrane for pervaporation of toluene/n-heptane mixtures[J]. Journal of Membrane Science, 2014, 455: 113-120. |
| 105 | Wang N X, Wang L, Zhang R, et al. Highly stable "pore-filling" tubular composite membrane by self-crosslinkable hyperbranched polymers for toluene/n-heptane separation[J]. Journal of Membrane Science, 2015, 474: 263-272. |
| 106 | Roizard D, Nilly A, Lochon P. Preparation and study of crosslinked polyurethane films to fractionate toluene-n-heptane mixtures by pervaporation[J]. Separation and Purification Technology, 2001, 22: 45-52. |
| 107 | Ribeiro C P, Freeman B D, Kalika D S, et al. Aromatic polyimide and polybenzoxazole membranes for the fractionation of aromatic/aliphatic hydrocarbons by pervaporation[J]. Journal of Membrane Science, 2012, 390: 182-193. |
| 108 | 李战胜, 高波, 张守海, 等. 渗透汽化分离芳烃/烷烃的聚芳醚腈酮复合膜的制备[J]. 膜科学与技术, 2019, 39(5): 18-22. |
| Li Z S, Gao B, Zhang S H, et al. Development of PPENK composite membranes for pervaporation of aromatic/aliphatic hydrocarbons[J]. Membrane Science and Technology, 2019, 39(5): 18-22. | |
| 109 | 曾昭容, 丁立, 彭勇, 等. 用于芳烃/烷烃体系蒸汽渗透分离的离子液体支撑液膜研究[J]. 高校化学工程学报, 2009, 23(5): 762-767. |
| Zeng Z R, Ding L, Peng Y, et al. Separation of aromatic hydrocarbon/alkane mixtures using supported liquid membrane with ionic liquids[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(5): 762-767. | |
| 110 | Kuila S B, Ray S K. Separation of benzene-cyclohexane mixtures by filled blend membranes of carboxymethyl cellulose and sodium alginate[J]. Separation and Purification Technology, 2014, 123: 45-52. |
| 111 | 王静康, 张远谋. 熔融结晶过程的新进展[J]. 化工进展, 1991, 10(1): 35-40. |
| Wang J K, Zhang Y M. New progress in melt crystallization process[J]. Chemical Industry and Engineering Progress, 1991, 10(1): 35-40. | |
| 112 | Wynn N. Separate organics by melt crystallization[J]. Chemical Engineering Progress, 2022, 88: 52-60. |
| 113 | 何选明, 李维, 方嘉淇, 等. 萘油深加工及分离技术研究进展[J]. 燃料与化工, 2013, 44(4): 49-51. |
| He X M, Li W, Fang J Q, et al. Further processing and separation technology for naphthalene oil[J]. Fuel & Chemical Processes, 2013, 44(4): 49-51. | |
| 114 | 张东明, 许松林, 张德立, 等. 气泡塔分步结晶法从乙烯副产焦油中提取精萘[J]. 石油炼制与化工, 1997, 28(8): 18-21. |
| Zhang D M, Xu S L, Zhang D L, et al. Preparation of refined naphthalene from ethylene by-product tar by fractional crystallization in a bubble column[J]. Petroleum Processing and Petrochemicals, 1997, 28(8): 18-21. | |
| 115 | 托马斯·W·比特纳, 乌尔里希·克尼珀斯, 康拉德·施托尔岑贝格. 通过熔融结晶制备蒽和咔唑: 1229314C[P]. 2005-11-30. |
| Thomas W B, Ulrich K, Konrad S. Obtaining anthracene and carbazole by melt-crystallization: 1229314C[P]. 2005-11-30. | |
| 116 | 郭永刚, 王景芹. 超声波在石油化工中应用的研究进展[J]. 当代化工, 2008, 37(1): 5-7, 10. |
| Guo Y G, Wang J Q. The advance of ultrasonic in petrochemical industry[J]. Contemporary Chemical Industry, 2008, 37(1): 5-7, 10. | |
| 117 | 马锐, 赵德智, 宋小梅, 等. 在超声功率辅助作用下催化裂化油浆糠醛抽提研究[J]. 化学与粘合, 2010, 32(2): 41-44. |
| Ma R, Zhao D Z, Song X M, et al. Study on the extraction of FCC slurry by furfural with ultrasound assistance[J]. Chemistry and Adhesion, 2010, 32(2): 41-44. | |
| 118 | 孙东旭, 戴咏川, 宋官龙, 等. 超声波辅助作用下芳烃萃取分离研究[J]. 现代化工, 2016, 36 (5): 94-97. |
| Sun D X, Dai Y C, Song G L, et al. Ultrasonic extraction of aromatics[J]. Modern Chemical Industry, 2016, 36(5): 94-97. | |
| 119 | 刘健, 李冬燕, 王晓梅. 一种分离提纯连三甲苯的方法: 111302883A[P]. 2020-06-19. |
| Liu J, Li D Y, Wang X M. Method for separating and purifying trimethylbenzene: 111302883A[P]. 2020-06-19. | |
| 120 | Gaile A A, Zalishchevskii G D, Gafur N N, et al. Removal of aromatic hydrocarbons from reforming naphtha. combined extraction: extractive-azeotropic distillation process[J]. Chemistry and Technology of Fuels and Oils, 2004, 40(4): 215-221. |
| 121 | 王德华, 王建伟, 郁灼, 等. 碳八芳烃异构体分离技术评述[J]. 化工进展, 2007, 26(3): 315-319. |
| Wang D H, Wang J W, Yu Z, et al. Review of C8 aromatics separation technologies[J]. Chemical Industry and Engineering Progress, 2007, 26(3): 315-319. | |
| 122 | 陆承东, 胡玛丽. C8芳烃的分离技术[J]. 钢铁研究, 1997, 25(3): 57-62. |
| Lu C D, Hu M L. Technology of separatino C8 arene[J]. Research on Iron and Steel Research, 1997, 25(3): 57-62. | |
| 123 | 刘瑞兴. 结晶法分离混合二甲苯[J]. 现代化工, 1987, 7(4): 54-57. |
| Liu R X. Crystalization-separation of redimethylbenzene from mzxed-dimethylbenzene[J]. Modern Chemical Industry, 1987, 7(4): 54-57. | |
| 124 | 沈澍. 熔融结晶法纯化对二甲苯研究[D]. 天津: 天津大学, 2017. |
| Shen S. Study on purification of para-xylene by melt crystallization[D]. Tianjin: Tianjin University, 2017. | |
| 125 | Kim D, Ghosh S, Akter N, et al. Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication[J]. Science Advances, 2022, 8(14): eabm8162. |
| 126 | Wu X C, Wei W, Jiang P J, et al. High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation[J]. Angewandte Chemie International Edition, 2018, 57(47): 15354-15358. |
| 127 | Liu S Y, Li W P, Chen C C, et al. Ultrathin cyclodextrin nanofilm composite membranes for efficient separation of xylene isomers[J]. Journal of Membrane Science, 2022, 644: 120165. |
| 128 | Zheng H Y, Yoshikawa M. Molecularly imprinted cellulose membranes for pervaporation separation of xylene isomers[J]. Journal of Membrane Science, 2015, 478: 148-154. |
| 129 | Kasik A, Lin Y S. Organic solvent pervaporation properties of MOF-5 membranes[J]. Separation and Purification Technology, 2014, 121: 38-45. |
| 130 | 卢暄. 从催化重整副产C9芳烃分离制取偏三甲苯、均三甲苯技术[J]. 化学工业, 2010, 28(12): 30-33. |
| Lu X. Technological advance on comprehensive utilization of C9 heavy aromatics[J]. Chemical Industry, 2010, 28(12): 30-33. | |
| 131 | 匡华. C9芳烃中均三甲苯与邻甲乙苯的分离研究[J]. 化学反应工程与工艺, 2004, 20(2): 184-187. |
| Kuang H. Separation of mesitylene and o-methylethylbenzene from C9 aromatic[J]. Chemical Reaction Engineering and Technology, 2004, 20(2): 184-187. | |
| 132 | 冯海强, 傅吉全. 采用分离集成技术从碳九芳烃中提取均三甲苯[J]. 化工进展, 2011, 30(3): 478-482. |
| Feng H Q, Fu J Q. Extraction of mesitylene from C9 arene by integrated separation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(3): 478-482. | |
| 133 | 赵永祥, 李杰. 新型填料塔技术在C9芳烃分离中的应用[J]. 辽宁化工, 2001, 30(6): 260-262. |
| Zhao Y X, Li J. The use of the new-packing column technology in separation of C9 aromatic hydrocarbon[J]. Liaoning Chemical Industry, 2001, 30(6): 260-262. | |
| 134 | 徐振凯, 马海洪. 偏三甲苯多效热集成分离工艺的模拟研究[J]. 石油炼制与化工, 2011, 42(6): 73-76. |
| Xu Z K, Ma H H. Simulation study of 1,2,4-trimethylbenzen separation process with multi-effect heat integration distillation[J]. Petroleum Processing and Petrochemicals, 2011, 42(6): 73-76. | |
| 135 | 王哲. 重整碳九分离系统的节能流程研究[J]. 资源节约与环保, 2016, 31(6): 17. |
| Wang Z. Study on energy-saving process of reforming C9 separation system[J]. Resources Economization & Environmental Protection, 2016, 31(6): 17. | |
| 136 | 田文彦. C9芳烃中连三甲苯与茚满的精密精馏和深冷分离[J]. 精细石油化工进展, 2007, 8(9): 41-42, 45. |
| Tian W Y. Precise distillation and cryogenic separation of hemellitene and indene from C9 aromatic mixtures[J]. Advances in Fine Petrochemicals, 2007, 8(9): 41-42, 45. | |
| 137 | 张瑞琪, 姜斌, 任海伦, 等. 环丁砜萃取精馏提纯连三甲苯的实验和模拟[J]. 化工进展, 2016, 35(11): 3465-3469. |
| Zhang R Q, Jiang B, Ren H L, et al. Experiment and simulation on the purification of 1,2,3-trimethylbenzene by extractive distillation with sulfolane[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3465-3469. | |
| 138 | 林军, 顾正桂. 重整C9芳烃中甲乙苯的分离及利用[J]. 化工时刊, 2001, 15(2): 25-26. |
| Lin J, Gu Z G. Application & separation of ethyltoluene in C9 arene[J]. Chemical Industry Times, 2001, 15(2): 25-26. | |
| 139 | 杜建卫, 刘键, 黄奋生. C10重芳烃二乙苯的分离研究[J]. 天津化工, 2010, 24(4): 36-37. |
| Du J W, Liu J, Huang F S. Study on the separation of diethenyl-benzene from C10 heavy aromatics by extractive distillation[J]. Tianjin Chemical Industry, 2010, 24(4): 36-37. | |
| 140 | Cong S, Liu Y, Li H, et al. Purification and separation of durene by static melt crystallization[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 505-509. |
| 141 | 刘莹. 均四甲苯熔融结晶过程的研究[D]. 天津: 天津大学, 2013. |
| Liu Y. Study on melting crystallization process of durene[D]. Tianjin: Tianjin University, 2013. | |
| 142 | 张洪涛, 黄明凯. 重整C10重芳烃的综合利用[J]. 当代化工, 2001, 30(3): 145-148. |
| Zhang H T, Huang M K. Coprehensive utilization of heavy aromatics C10 in reformer unit[J]. Contemporary Chemical Industry, 2001, 30(3): 145-148. | |
| 143 | 袁国民, 从海峰, 李鑫钢. 重芳烃轻质化与分离研究进展[J]. 化学工业与工程, 2022, 39(3): 60-72. |
| Yuan G M, Cong H F, Li X G. Research progress in conversion to light aromatics and separation of heavy aromatics[J]. Chemical Industry and Engineering, 2022, 39(3): 60-72. | |
| 144 | 刘逸群, 王超, 卢春喜. 2,6-二甲基萘的分离技术进展[J]. 现代化工, 2024, 44(11): 60-65. |
| Liu Y Q, Wang C, Lu C X. Research progress on separation technologies for 2,6-dimethylnaphthalene[J]. Modern Chemical Industry, 2024, 44(11): 60-65. | |
| 145 | Ban H, Cheng Y W, Wang L J, et al. Preparation of high-purity 2,6-naphthalenedicarboxylic acid from coal tar distillate[J]. Chemical Engineering & Technology, 2019, 42(6): 1188-1198. |
| 146 | Kim S J. Separation and purification of 2,6-dimethylnaphthalene present in the fraction of light cycle oil by crystallization operation[J]. Applied Chemistry for Engineering, 2018, 29(6): 799-804. |
| 147 | Kang H C, Kim S J. Separation of 2,6-dimethylnaphthalene in dimethylnaphthalene isomers mixture by crystallization operation[J]. Applied Chemistry for Engineering, 2014, 25(1): 116-120. |
| 148 | Bei P Z, Rajendran A, Feng J, et al. Anthracene separation from analogous polycyclic aromatic hydrocarbons using the naphthalene-based solvents[J]. Fuel, 2023, 335: 127029. |
| [1] | 周印洁, 吉思蓓, 何松阳, 吉旭, 贺革. 机器学习辅助高通量筛选金属有机骨架用于富碳天然气中分离CO2[J]. 化工学报, 2025, 76(3): 1093-1101. |
| [2] | 崔家馨, 殷梦凡, 郑涛, 刘晗, 张睿, 刘植昌, 刘海燕, 徐春明, 孟祥海. 铝铜双金属离子液体在1-己烯/正己烷分离中的应用[J]. 化工学报, 2025, 76(2): 686-694. |
| [3] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
| [4] | 孟祥军, 杨林睿, 彭立培, 杨献奎, 花莹曦, 张人仁, 郑凯天, 许春建. 三氟化氮精馏分离流程的设计与控制[J]. 化工学报, 2025, 76(2): 707-717. |
| [5] | 杨林睿, 刘鉴漪, 李玲, 何永超, 郑凯天, 任建坡, 许春建. 苯/环己烷/环己烯萃取精馏过程的流程设计与节能[J]. 化工学报, 2025, 76(2): 731-743. |
| [6] | 尤潇楠, 范小强, 杨遥, 王靖岱, 阳永荣. 超临界乙烯和高压聚乙烯混合物的减压分离过程建模方法[J]. 化工学报, 2025, 76(2): 695-706. |
| [7] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
| [8] | 谢慧慧, 姜佳鑫, 王鑫, 李正, 郭鑫, 吕欣然, 王凌云, 刘杨. 深共晶溶剂聚合物包覆膜传输分离铂、钯的研究[J]. 化工学报, 2024, 75(S1): 235-243. |
| [9] | 邱知, 谭明. 聚离子液体膜的制备及其在低钠高钾健康酱油中的应用[J]. 化工学报, 2024, 75(S1): 244-250. |
| [10] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
| [11] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
| [12] | 刘亚超, 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山. DES合成高活性CoCO3纳米片及析氧反应性能研究[J]. 化工学报, 2024, 75(9): 3320-3328. |
| [13] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
| [14] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
| [15] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号