化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3286-3294.DOI: 10.11949/0438-1157.20241408
卢煦旸(
), 徐强(
), 康浩鹏, 史健, 曹泽水, 郭烈锦(
)
收稿日期:2024-12-04
修回日期:2025-04-10
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
徐强,郭烈锦
作者简介:卢煦旸(1996—),男,博士研究生,luxjtu@163.com
基金资助:
Xuyang LU(
), Qiang XU(
), Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO(
)
Received:2024-12-04
Revised:2025-04-10
Online:2025-07-25
Published:2025-08-13
Contact:
Qiang XU, Liejin GUO
摘要:
磁铁矿作为化学链制氢系统的氧载体,具有低成本和环境友好的显著优势。然而,其在CO还原过程中的反应速率受控机制仍不完全明晰。采用热重分析方法探讨了650~900℃条件下20%CO等温还原磁铁矿的反应特征和多步反应动力学。XRD半定量分析结果表明,Fe3O4→FeO和FeO→Fe两步反应的耦合关系是温度依赖的。在650~750℃温度区间,两步反应高度重叠;在800~900℃温度区间,两步反应串联发生。在此基础上采用基于JMA模型的方法进行动力学分析,第一步反应受化学反应模型或三维成核模型(Avrami-Erofe’ev模型)控制,第二步反应则受扩散模型控制。
中图分类号:
卢煦旸, 徐强, 康浩鹏, 史健, 曹泽水, 郭烈锦. 化学链制氢系统中磁铁矿氧载体的CO还原特性研究[J]. 化工学报, 2025, 76(7): 3286-3294.
Xuyang LU, Qiang XU, Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO. The CO reduction characteristics of magnetite oxygen carriers in chemical looping hydrogen production systems[J]. CIESC Journal, 2025, 76(7): 3286-3294.
| No. | Kinetic model | f(α) | g(α) |
|---|---|---|---|
| 1 | one-dimensional diffusion | 1/(2α) | α2 |
| 2 | two-dimensional diffusion | -[1/ln(1-α)] | (1-α)ln(1-α)+α |
| 3 | 3D-diffusion (Jander equation) | (3/2)(1-α)2/3(1-(1-α)1/3)-1 | (1-(1-α)1/3)2 |
| 4 | Avrami-Erofe’ev | (3/2) (1-α)(-ln(1-α))1/3 | (-ln(1-α))2/3 |
| 5 | Avrami-Erofe’ev | 2(1-α)(-ln(1-α))1/2 | (-ln(1-α))1/2 |
| 6 | Avrami-Erofe’ev | 3(1-α)(-ln(1-α))2/3 | (-ln(1-α))1/3 |
| 7 | contracting cylinder | 2(1-α)1/2 | 1-(1-α)1/2 |
| 8 | contracting sphere | 3(1-α)2/3 | 1-(1-α)1/3 |
| 9 | first-order | 1-α | -ln(1-α) |
| 10 | second-order | (1-α)2 | (1-α)-1-1 |
表1 常见的动力学模型
Table 1 Common kinetic models
| No. | Kinetic model | f(α) | g(α) |
|---|---|---|---|
| 1 | one-dimensional diffusion | 1/(2α) | α2 |
| 2 | two-dimensional diffusion | -[1/ln(1-α)] | (1-α)ln(1-α)+α |
| 3 | 3D-diffusion (Jander equation) | (3/2)(1-α)2/3(1-(1-α)1/3)-1 | (1-(1-α)1/3)2 |
| 4 | Avrami-Erofe’ev | (3/2) (1-α)(-ln(1-α))1/3 | (-ln(1-α))2/3 |
| 5 | Avrami-Erofe’ev | 2(1-α)(-ln(1-α))1/2 | (-ln(1-α))1/2 |
| 6 | Avrami-Erofe’ev | 3(1-α)(-ln(1-α))2/3 | (-ln(1-α))1/3 |
| 7 | contracting cylinder | 2(1-α)1/2 | 1-(1-α)1/2 |
| 8 | contracting sphere | 3(1-α)2/3 | 1-(1-α)1/3 |
| 9 | first-order | 1-α | -ln(1-α) |
| 10 | second-order | (1-α)2 | (1-α)-1-1 |
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 650 | 0.1674 | 0.007 |
| 700 | 0.2083 | 0.009 | |
| 750 | 0.2831 | 0.013 | |
| a2 | 650 | 0.1164 | 0.005 |
| 700 | 0.0872 | 0.002 | |
| 750 | 0.0820 | 0.003 | |
| n1 | 650 | 0.9081 | 0.027 |
| 700 | 1.1132 | 0.040 | |
| 750 | 1.1257 | 0.052 | |
| n2 | 650 | 0.5120 | 0.009 |
| 700 | 0.6398 | 0.008 | |
| 750 | 0.7077 | 0.011 |
表2 JMA拟合参数a1、a2和n1、n2
Table 2 JMA fitting parameters a1,a2 and n1,n2
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 650 | 0.1674 | 0.007 |
| 700 | 0.2083 | 0.009 | |
| 750 | 0.2831 | 0.013 | |
| a2 | 650 | 0.1164 | 0.005 |
| 700 | 0.0872 | 0.002 | |
| 750 | 0.0820 | 0.003 | |
| n1 | 650 | 0.9081 | 0.027 |
| 700 | 1.1132 | 0.040 | |
| 750 | 1.1257 | 0.052 | |
| n2 | 650 | 0.5120 | 0.009 |
| 700 | 0.6398 | 0.008 | |
| 750 | 0.7077 | 0.011 |
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 800 | 0.4351 | 0.020 |
| 850 | 0.4610 | 0.014 | |
| 900 | 0.6107 | 0.013 | |
| a2 | 800 | 0.1006 | 0.002 |
| 850 | 0.1262 | 0.002 | |
| 900 | 0.1180 | 0.001 | |
| n1 | 800 | 2.6962 | 0.138 |
| 850 | 3.0448 | 0.109 | |
| 900 | 3.2218 | 0.097 | |
| n2 | 800 | 0.7582 | 0.007 |
| 850 | 0.7761 | 0.006 | |
| 900 | 0.9502 | 0.005 |
表3 JMA拟合参数a1、a2和 n1、n2
Table 3 JMA fitting parameters a1,a2 and n1,n2
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 800 | 0.4351 | 0.020 |
| 850 | 0.4610 | 0.014 | |
| 900 | 0.6107 | 0.013 | |
| a2 | 800 | 0.1006 | 0.002 |
| 850 | 0.1262 | 0.002 | |
| 900 | 0.1180 | 0.001 | |
| n1 | 800 | 2.6962 | 0.138 |
| 850 | 3.0448 | 0.109 | |
| 900 | 3.2218 | 0.097 | |
| n2 | 800 | 0.7582 | 0.007 |
| 850 | 0.7761 | 0.006 | |
| 900 | 0.9502 | 0.005 |
| 温度/℃ | CO浓度/% | 反应步骤 | 反应机制 | E/(kJ/mol) | 文献 |
|---|---|---|---|---|---|
| 750~950 | 40 | Fe3O4→FeO | chemical reaction | 52.44 | [ |
| FeO→Fe | chemical reaction | 45.74 | |||
| 600~800 | 60 | Fe3O4→FeO | phase boundary | 35.01 | [ |
| 600~720 | FeO→Fe | phase boundary and gas diffusion | 42.83 | ||
| 760~800 | FeO→Fe | NA | 14.27 | ||
| 750~900 | 10~50 | Fe3O4→FeO | contracting cylinder | 54.93 | [ |
| FeO→Fe | first-order | 45.8 | |||
| 700~850 | 50 | Fe3O4→FeO | second-order | 40.92 | [ |
| FeO→Fe | first-order | 60.87 | |||
| 650~750 | 20 | Fe3O4→FeO | chemical reaction | 66.84 | 本文 |
| FeO→Fe | gas diffusion | 52.48 | |||
| 800~900 | 20 | Fe3O4→FeO | nucleation and growth | 16.21 | |
| FeO→Fe | gas diffusion | 81.52 |
表4 文献中关于Fe3O4→FeO和FeO→Fe两步反应的动力学结果
Table 4 The kinetic results of the two-step reactions of Fe3O4→FeO and FeO→Fe in the literature
| 温度/℃ | CO浓度/% | 反应步骤 | 反应机制 | E/(kJ/mol) | 文献 |
|---|---|---|---|---|---|
| 750~950 | 40 | Fe3O4→FeO | chemical reaction | 52.44 | [ |
| FeO→Fe | chemical reaction | 45.74 | |||
| 600~800 | 60 | Fe3O4→FeO | phase boundary | 35.01 | [ |
| 600~720 | FeO→Fe | phase boundary and gas diffusion | 42.83 | ||
| 760~800 | FeO→Fe | NA | 14.27 | ||
| 750~900 | 10~50 | Fe3O4→FeO | contracting cylinder | 54.93 | [ |
| FeO→Fe | first-order | 45.8 | |||
| 700~850 | 50 | Fe3O4→FeO | second-order | 40.92 | [ |
| FeO→Fe | first-order | 60.87 | |||
| 650~750 | 20 | Fe3O4→FeO | chemical reaction | 66.84 | 本文 |
| FeO→Fe | gas diffusion | 52.48 | |||
| 800~900 | 20 | Fe3O4→FeO | nucleation and growth | 16.21 | |
| FeO→Fe | gas diffusion | 81.52 |
| [1] | Sun M M, Pang K L, Barati M, et al. Hydrogen-based reduction technologies in low-carbon sustainable ironmaking and steelmaking: a review[J]. Journal of Sustainable Metallurgy, 2024, 10(1): 10-25. |
| [2] | Hou B L, Zhang H Y, Li H Z, et al. Study on kinetics of iron oxide reduction by hydrogen[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 10-17. |
| [3] | 冯相昭, 黄晓丹, 李欢, 等. “双碳”背景下氢冶金发展面临的机遇、挑战及对策建议[J]. 可持续发展经济导刊, 2024(S1): 45-49. |
| Feng X Z, Huang X D, Li H, et al. Opportunities, challenges and countermeasures for the development of hydrogen metallurgy in the context of carbon peak and carbon neutrality[J]. China Sustainability Tribune, 2024(S1): 45-49. | |
| [4] | Monazam E R, Breault R W, Siriwardane R. Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion[J]. Chemical Engineering Journal, 2014, 242: 204-210. |
| [5] | Oh J, Noh D. The reduction kinetics of hematite particles in H2 and CO atmospheres[J]. Fuel, 2017, 196: 144-153. |
| [6] | Go K S, Son S R, Kim S D. Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33(21): 5986-5995. |
| [7] | Morey C, Tang Q M, Sun S C, et al. A kinetic study on H2 reduction of Fe3O4 for long-duration energy-storage-compatible solid oxide iron air batteries[J]. Journal of the Electrochemical Society, 2023, 170(10): 104504. |
| [8] | Wen F, Wang H, Tang Z X. Kinetic study of the redox process of iron oxide for hydrogen production at oxidation step[J]. Thermochimica Acta, 2011, 520(1/2): 55-60. |
| [9] | Yu Z L, Yang Y Y, Yang S, et al. Iron-based oxygen carriers in chemical looping conversions: a review[J]. Carbon Resources Conversion, 2019, 2(1): 23-34. |
| [10] | Lougou B G, Hong J R, Shuai Y, et al. Production mechanism analysis of H2 and CO via solar thermochemical cycles based on iron oxide (Fe3O4) at high temperature[J]. Solar Energy, 2017, 148: 117-127. |
| [11] | Chen S Y, Xue Z P, Wang D, et al. Hydrogen and electricity co-production plant integrating steam-iron process and chemical looping combustion[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8204-8216. |
| [12] | Kuila S K, Chaudhuri S, Chatterjee R, et al. Reduction of magnetite ore fines with hydrogen[C]//Proceedings of 4th International Conference on Chemical Engineering. Dhaka,Bangladesh, 2014. |
| [13] | Kuila S K, Chatterjee R, Ghosh D. Kinetics of hydrogen reduction of magnetite ore fines[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9256-9266. |
| [14] | Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2(part Ⅰ): Low temperature reduction of hematite[J]. Thermochimica Acta, 2006, 447(1): 89-100. |
| [15] | Chen H S, Zheng Z, Chen Z W, et al. Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: a multistep kinetics study[J]. Powder Technology, 2017, 316: 410-420. |
| [16] | He K, Zheng Z, Chen Z W. Multistep reduction kinetics of Fe3O4 to Fe with CO in a micro fluidized bed reaction analyzer[J]. Powder Technology, 2020, 360: 1227-1236. |
| [17] | Wang H M, Liu B J, Yang G Y, et al. Multistep kinetic study of Fe2O3 reduction by H2 based on isothermal thermogravimetric analysis data deconvolution[J]. International Journal of Hydrogen Energy, 2023, 48(44): 16601-16613. |
| [18] | Wagner D, Devisme O, Patisson F, et al. A laboratory study of the reduction of iron oxides by hydrogen[C]//Sohn International Symposium on Advanced Processing of Metals and Materials. San Diego, 2006. |
| [19] | Dilmaç N. Isothermal and non-isothermal reduction kinetics of iron ore oxygen carrier by CO: modelistic and model-free approaches[J]. Fuel, 2021, 296: 120707. |
| [20] | Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures(Ⅰ): Matrix-flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 1974, 7(6): 519-525. |
| [21] | Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J]. Applied Catalysis A: General, 2007, 326(1): 17-27. |
| [22] | Vyazovkin S, Burnham A K, Favergeon L, et al. ICTAC kinetics committee recommendations for analysis of multi-step kinetics[J]. Thermochimica Acta, 2020, 689: 178597. |
| [23] | Spreitzer D, Schenk J. Reduction of iron oxides with hydrogen: a review[J]. Steel Research International, 2019, 90(10): 1900108. |
| [24] | Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses[J]. Thermochimica Acta, 1995, 267: 61-73. |
| [25] | Abolpour B, Afsahi M M, Azizkarimi M. Reduction kinetics of magnetite concentrate particles by carbon monoxide[J]. Mineral Processing and Extractive Metallurgy, 2018, 127(1): 29-39. |
| [26] | Chen H S, Zheng Z, Shi W Y. Investigation on the kinetics of iron ore fines reduction by CO in a micro-fluidized bed[J]. Procedia Engineering, 2015, 102: 1726-1735. |
| [27] | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
| [28] | Lu X Y, Xu Q, Kang H P, et al. Multistep kinetic study of magnetite reduction by hydrogen based on thermogravimetric analysis[J]. International Journal of Hydrogen Energy, 2024, 73: 695-707. |
| [29] | Spreitzer D, Schenk J. Iron ore reduction by hydrogen using a laboratory scale fluidized bed reactor: kinetic investigation—experimental setup and method for determination[J]. Metallurgical and Materials Transactions B, 2019, 50(5): 2471-2484. |
| [30] | Piotrowski K, Mondal K, Wiltowski T, et al. Topochemical approach of kinetics of the reduction of hematite to wüstite[J]. Chemical Engineering Journal, 2007, 131(1/2/3): 73-82. |
| [1] | 吴天灏, 叶霆威, 林延, 黄振. 生物质化学链气化原位补氢制H2/CO可控合成气[J]. 化工学报, 2025, 76(7): 3498-3508. |
| [2] | 卢丽丽, 李晨, 陈柳云, 谢新玲, 罗轩, 苏通明, 秦祖赠, 纪红兵. BiOBr的形貌调控及其光催化CO2还原性能的研究[J]. 化工学报, 2025, 76(6): 2687-2700. |
| [3] | 龚丽芳, 任美慧, 蒋吉春, 郭光召, 胡红云, 黄永达, 姚洪. 垃圾焚烧烟气中芳香烃化合物在线监测和选择性催化还原脱除研究[J]. 化工学报, 2025, 76(6): 3018-3028. |
| [4] | 唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| [5] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
| [6] | 彭子林, 周蕾, 邓庆航, 叶光华, 周兴贵. 包含偏硅酸影响的3D NAND磷酸湿法刻蚀动力学[J]. 化工学报, 2025, 76(2): 645-653. |
| [7] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
| [8] | 李奕菲, 苏沿霏, 尹甜, 姜浩强, 许志明, 张霖宙, 史权, 徐春明. 基于GC×GC-TOF MS的煤液化产物油分子组成结构表征[J]. 化工学报, 2025, 76(2): 543-553. |
| [9] | 吴雨轩, 常诚, 顾雪萍, 冯连芳, 张才亮. 面向立体异构的丁二烯乳液聚合过程模型化[J]. 化工学报, 2025, 76(2): 879-887. |
| [10] | 张思文, 顾海明, 赵善辉. 纳米氧化铁对纤维素化学链气化的分子反应机理[J]. 化工学报, 2025, 76(1): 363-373. |
| [11] | 胡术刚, 田国庆, 刘文娟, 徐广飞, 刘华清, 张建, 王艳龙. 纳米零价铁的制备及氧化还原技术的应用进展[J]. 化工学报, 2024, 75(9): 3041-3055. |
| [12] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
| [13] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [14] | 童永祺, 程杰, 林海, 陈曦, 赵海波. 10 MWth化学链燃烧反应装置的CPFD模拟[J]. 化工学报, 2024, 75(8): 2949-2959. |
| [15] | 郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号