化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4850-4861.DOI: 10.11949/0438-1157.20250061
收稿日期:2025-01-14
修回日期:2025-04-21
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
姬忠礼
作者简介:李文龙(1994—),男,博士研究生,liwenlong_8023@163.com
基金资助:
Wenlong LI(
), Cheng CHANG, Xiaolin WU, Zhongli JI(
)
Received:2025-01-14
Revised:2025-04-21
Online:2025-09-25
Published:2025-10-23
Contact:
Zhongli JI
摘要:
油水聚结过滤过程中,明晰滤材中的液体分布和压降演化对于研究过滤机理、优化滤材结构至关重要。利用油水聚结过滤材料性能实验装置,分析了不同孔径滤材中的液体分布特性和压降演化过程,深入探讨了过滤速度和液体载荷率对滤材饱和度和过程压降的影响。结果表明:油水聚结分离过程中的液体分布和压降变化符合跳跃-通道模型,但是由于液池的存在,会导致通道阶段初期的压降突变。孔径大小决定了进入滤材内部的液体数量,进而影响液体行为和压降变化。随着过滤速度的增大,大孔径滤材中的饱和度逐渐降低,但下降幅度逐渐减弱,跳跃压降逐渐增大,通道压降保持相对稳定;小孔径滤材的饱和度则恰好相反。随着载荷率的增大,大孔径滤材的饱和度上升,跳跃压降和通道压降均增加;对于小孔径滤材,载荷率的增加对饱和度影响较小,跳跃压降几乎不变,但通道压降明显增大。最后建立了滤材中的液体分布预测模型,可用于定量表征通道饱和度与孔径、过滤速度和载荷率之间的关系。本研究可为优化滤材结构和操作参数、降低维护成本提供理论依据和技术支撑。
中图分类号:
李文龙, 常程, 吴小林, 姬忠礼. 油水聚结过滤材料中的液体分布特性及过程压降演化研究[J]. 化工学报, 2025, 76(9): 4850-4861.
Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters[J]. CIESC Journal, 2025, 76(9): 4850-4861.
| 滤材 | 平均孔径/μm | 空气中接触角/(°) | 油下接触角/(°) | 平均纤维直径/μm | 平均厚度/mm |
|---|---|---|---|---|---|
| GF1 | 18.34 | 127.2 | 134.9 | 5.89 | 0.48 |
| GF2 | 6.98 | 131.7 | 135.1 | 5.25 | 0.51 |
表1 过滤材料物性参数
Table1 Properties of filters
| 滤材 | 平均孔径/μm | 空气中接触角/(°) | 油下接触角/(°) | 平均纤维直径/μm | 平均厚度/mm |
|---|---|---|---|---|---|
| GF1 | 18.34 | 127.2 | 134.9 | 5.89 | 0.48 |
| GF2 | 6.98 | 131.7 | 135.1 | 5.25 | 0.51 |
| [1] | Clark A Q, Smith A G, Threadgold S, et al. Dispersed water and particulates in jet fuel: size analysis under operational conditions and application to coalescer disarming[J]. Industrial & Engineering Chemistry Research, 2011, 50(9): 5749-5765. |
| [2] | 谭蔚, 王灿, 李兵兵. 疏水玻璃纤维毡的制备及其油水分离性能研究[J]. 高校化学工程学报, 2020, 34(5): 1167-1174. |
| Tan W, Wang C, Li B B. Preparation of a hydrophobic glass fiber felt and its oil/water separation performance[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1167-1174. | |
| [3] | Lam J K, Carpenter M D, Williams C A, et al. Water solubility characteristics of current aviation jet fuels[J]. Fuel, 2014, 133: 26-33. |
| [4] | Williams J G, Morris C E M, Ennis B C. Liquid flow through aligned fiber beds[J]. Polymer Engineering & Science, 1974, 14(6): 413-419. |
| [5] | Sokolović R Š, Sokolović S, Šević S. Oily water treatment using a new steady-state fiber-bed coalescer[J]. Journal of Hazardous Materials, 2009, 162(1): 410-415. |
| [6] | Speth H, Pfennig A, Chatterjee M, et al. Coalescence of secondary dispersions in fiber beds[J]. Separation and Purification Technology, 2002, 29(2): 113-119. |
| [7] | Chen F, Ji Z L, Qi Q Q. Effect of pore size and layers on filtration performance of coalescing filters with different wettabilities[J]. Separation and Purification Technology, 2018, 201: 71-78. |
| [8] | Liu Y Q, Lu H, Li Y D, et al. A review of treatment technologies for produced water in offshore oil and gas fields[J]. Science of the Total Environment, 2021, 775: 145485. |
| [9] | Singh C J, Mukhopadhyay S, Rengasamy R S. Fibrous coalescence filtration in treating oily wastewater: a review[J]. Journal of Industrial Textiles, 2022, 51(): 3648S-3682S. |
| [10] | Hazlett R N. Fibrous bed coalescence of water. Role of a sulfonate surfactant in the coalescence process[J]. Industrial & Engineering Chemistry Fundamentals, 1969, 8(4): 633-640. |
| [11] | Spielman L A, Goren S L. Theory of coalescence by flow through porous media[J]. Industrial & Engineering Chemistry Fundamentals, 1972, 11(1): 66-72. |
| [12] | Chang C, Ji Z L, Liu J L. Pressure drop and saturation of nonwettable coalescing filters at different loading rates[J]. AIChE Journal, 2018, 64(1): 180-185. |
| [13] | Luo H Q, Yang X Y, Lu Z J, et al. Effect of drainage layer on oil distribution and separation performance of fiber-bed coalescer[J]. Separation and Purification Technology, 2019, 218: 173-180. |
| [14] | Mead-Hunter R, Braddock R D, Kampa D, et al. The relationship between pressure drop and liquid saturation in oil-mist filters—predicting filter saturation using a capillary based model[J]. Separation and Purification Technology, 2013, 104: 121-129. |
| [15] | 杨强, 卢浩, 李裕东, 等. 聚结分离技术在含油污水处理中的应用研究进展[J]. 环境工程学报, 2021, 15(3): 767-781. |
| Yang Q, Lu H, Li Y D, et al. Application and research progress of coalescence separation in oily wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 767-781. | |
| [16] | Gadhave A D, Mehdizadeh S N, Chase G G. Effect of pore size and wettability of multilayered coalescing filters on water-in-ULSD coalescence[J]. Separation and Purification Technology, 2019, 221: 236-248. |
| [17] | Han Q, Kang Y. Separation of water-in-oil emulsion with microfiber glass coalescing bed[J]. Journal of Dispersion Science and Technology, 2017, 38(11): 1523-1529. |
| [18] | Bansal S, von Arnim V, Stegmaier T, et al. Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 45-50. |
| [19] | Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration[J]. International Journal of Multiphase Flow, 2014, 58: 313-324. |
| [20] | Kampa D, Wurster S, Meyer J, et al. Validation of a new phenomenological "jump-and-channel" model for the wet pressure drop of oil mist filters[J]. Chemical Engineering Science, 2015, 122: 150-160. |
| [21] | Ma S H, Kang Y, Cui S B. Oil and water separation using a glass microfiber coalescing bed[J]. Journal of Dispersion Science and Technology, 2014, 35(1): 103-110. |
| [22] | Akbar A M, Othman F M. Prediction of oil saturation in a fibrous bed coalescer from pressure drop data[J]. Journal of Dispersion Science and Technology, 1989, 10(6): 697-713. |
| [23] | Zhang L H, Zhu T Y, Sun Y L, et al. Experimental study of precision-woven fabrics for oil-in-water emulsion coalescence: operating conditions and oil saturation[J]. Journal of Dispersion Science and Technology, 2015, 36(2): 182-189. |
| [24] | 王英, 刘浪, 谢云霞, 等. 操作参数和滤材结构对纤维滤材油-水聚结分离性能的影响[J]. 石油学报(石油加工), 2024, 40(4): 942-952. |
| Wang Y, Liu L, Xie Y X, et al. Influence of operating parameters and filter material structure on the oil-water coalescence and separation performance[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(4): 942-952. | |
| [25] | Bitten J F. Coalescence of water droplets on single fibers[J]. Journal of Colloid and Interface Science, 1970, 33(2): 265-271. |
| [26] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 喷气燃料过滤分离器通用技术规范: [S]. 北京: 中国标准出版社, 2008. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Specifications for aviation jet fuel filter/separators: [S]. Beijing: Standards Press of China, 2008. | |
| [27] | Osman K S, Taylor S E. Insight into liquid interactions with fibrous absorbent filter media using low-field NMR relaxometry. Prospective application to water/jet fuel filter-coalescence[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14651-14661 |
| [28] | Agarwal S, von Arnim V, Stegmaier T, et al. Role of surface wettability and roughness in emulsion separation[J]. Separation and Purification Technology, 2013, 107: 19-25. |
| [29] | Kolb H E, Meyer J, Kasper G. Flow velocity dependence of the pressure drop of oil mist filters[J]. Chemical Engineering Science, 2017, 166: 107-114. |
| [30] | Frising T, Thomas D, Bémer D, et al. Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study[J]. Chemical Engineering Science, 2005, 60(10): 2751-2762. |
| [31] | Song Q, Wang X Y, Liang Y, et al. Surfactant adsorption on fiber: impact on water/diesel separation performance of coalescer media[J]. Separation and Purification Technology, 2025, 360: 131003. |
| [32] | Walsh D C. Recent advances in the understanding of fibrous filter behaviour under solid particle load[J]. Filtration & Separation, 1996, 33(6): 501-506. |
| [33] | Penner T, Meyer J, Kasper G, et al. Impact of operating conditions on the evolution of droplet penetration in oil mist filters[J]. Separation and Purification Technology, 2019, 211: 697-703. |
| [34] | Luo H Q, Bai Z S. Investigation of O/W emulsion separation and redispersion using fibrous PTFE bed coalescer[J]. Separation Science and Technology, 2019, 54(7): 1221-1232. |
| [35] | Chen F, Ji Z L, Qi Q Q. Effect of liquid surface tension on the filtration performance of coalescing filters[J]. Separation and Purification Technology, 2019, 209: 881-891. |
| [36] | Šećerov Sokolović R M, Sokolović S M, Đoković B D. Effect of working conditions on bed coalescence of an oil-in-water emulsion using a polyurethane foam bed[J]. Industrial & Engineering Chemistry Research, 1997, 36(11): 4949-4953. |
| [37] | 宋荣军, 姬康, 陈月娥, 等. 气液聚结滤材液体通道饱和度及压降实验[J]. 油气储运, 2023, 42(6): 670-677. |
| Song R J, Ji K, Chen Y E, et al. Experimental on liquid passage saturation and pressure drop of gas-liquid coalescing filter material[J]. Oil & Gas Storage and Transportation, 2023, 42(6): 670-677. |
| [1] | 蒋明虎, 汪帆, 邢雷, 赵立新, 李新亚, 陈丁玮. 井下含气对油水分离管柱流场特性及性能影响[J]. 化工学报, 2025, 76(7): 3361-3372. |
| [2] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [3] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
| [4] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
| [5] | 董可豪, 周敬之, 周峰, 陈海家, 淮秀兰, 李栋. 超薄空间复杂边界条件下气体流动压降实验[J]. 化工学报, 2024, 75(7): 2505-2521. |
| [6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
| [7] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
| [8] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
| [9] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
| [10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 多级螺旋分离器结构优化设计与性能分析[J]. 化工学报, 2023, 74(11): 4587-4599. |
| [11] | 李昀, 曹杰, 华夏, 吴慧英. 短程逆流式微通道内的流动沸腾传热特性实验研究[J]. 化工学报, 2023, 74(11): 4501-4514. |
| [12] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
| [13] | 禹言芳, 刘桓辰, 孟辉波, 刘励图, 李毓, 吴剑华. Lightnin静态混合器内气泡分散流体动力学特性实验研究[J]. 化工学报, 2022, 73(8): 3565-3575. |
| [14] | 周云龙, 刘起超. 起伏振动倾斜上升管气液两相流摩擦阻力分析与计算[J]. 化工学报, 2022, 73(2): 643-652. |
| [15] | 薛涵文, 聂峰, 赵延兴, 董学强, 郭浩, 沈俊, 公茂琼. 基于流型的R290水平管内流动沸腾压降实验研究[J]. 化工学报, 2022, 73(11): 4903-4916. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号