化工学报 ›› 2014, Vol. 65 ›› Issue (z2): 19-24.DOI: 10.3969/j.issn.0438-1157.2014.z2.003

• 热力学 • 上一篇    下一篇

基于双工质对的吸收式制冷循环热力分析

徐孟飞, 殷勇高, 张小松   

  1. 东南大学能源与环境学院, 能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
  • 收稿日期:2014-08-18 修回日期:2014-08-28 出版日期:2014-12-30 发布日期:2014-12-30
  • 通讯作者: 殷勇高
  • 基金资助:

    国家自然科学基金项目(51376043);霍英东教育基金会高等院校青年教师基金项目(141052)。

Thermodynamic analysis of absorption refrigeration cycle using two working pairs

XU Mengfei, YIN Yonggao, ZHANG Xiaosong   

  1. School of Energy and Environment, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2014-08-18 Revised:2014-08-28 Online:2014-12-30 Published:2014-12-30
  • Supported by:

    supported by the National Natural Science Foundation of China (51376043).

摘要:

提出一种基于双工质对的吸收式制冷循环,该循环分别采用饱和蒸气压较高的LiCl水溶液作为高压级工质对,饱和蒸气压较低的LiBr水溶液作为低压级工质对。对不同运行工况下循环的热力性能进行了理论计算与分析。结果表明,当驱动热源温度较低时,LiCl水溶液比LiBr水溶液表现出更好的热力性能。而且,基于双工质对的吸收式制冷循环可以将低位太阳能的利用温区扩宽到55~75℃,循环热力系数最高达0.47。还可以增加白天低温太阳能的利用时间,提高太阳能集热效率。另外,中间压力对循环热力性能影响显著,存在最佳的中间压力使循环热力性能达到最大,热力分析结果表明中间压力范围为2.5~4.0 kPa。

关键词: 吸收式制冷, 太阳能, 双工质对, 热力分析

Abstract:

An absorption refrigeration cycle using two working pairs was presented, taking LiBr solution with low saturated vapor pressure as the working pair for the low-pressure stage and LiCl solution with higher saturated vapor pressure for the high-pressure stage. The thermodynamic performance of the cycle was investigated and evaluated with variable operation conditions. It shows that the single stage absorption chiller with LiCl solution as the working fluid has a higher COP than LiBr solution when the driven heat temperature is low. The low grade solar energy driving the absorption chiller can be extended to 55—75℃ and the maximal COP can reach up to 0.47 owning to two working fluids. Consequently, the available operation time is increased and the efficiency of solar collector is improved. In particular, the intermediate pressure has a significant influence on the COP of the system, and there is an optimal intermediate pressure making the COP of the system maximum. The theoretical analyses reveal that the optimal intermediate pressure for the system lies from 2.5 kPa to 4.0 kPa.

Key words: absorption, solar energy, two working pairs, thermodynamic analysis

中图分类号: