化工学报 ›› 2015, Vol. 66 ›› Issue (5): 1738-1747.DOI: 10.11949/j.issn.0438-1157.20141894
刘丽丽, 台夕市, 刘美芳, 李玉峰, 冯一民, 孙晓日
收稿日期:
2014-12-22
修回日期:
2015-02-04
出版日期:
2015-05-05
发布日期:
2015-05-05
通讯作者:
刘丽丽
基金资助:
LIU Lili, TAI Xishi, LIU Meifang, LI Yufeng, FENG Yimin, SUN Xiaori
Received:
2014-12-22
Revised:
2015-02-04
Online:
2015-05-05
Published:
2015-05-05
Supported by:
摘要: 采用浸渍法制备了Au/MOF-5催化剂,用X射线衍射(XRD)、N2物理吸附、红外光谱(IR)、热重分析(TG-DTA)、电感耦合等离子体原子发射光谱(ICP-AES)和透射电镜(TEM)对催化剂进行表征,并探索其在醛、炔和胺三组分(A3)偶联反应中的催化性能。实验结果表明:Au/MOF-5对醛、炔和胺三组分偶联反应具有较好的催化活性,而且对产物炔丙基胺的选择性为100%。Au/MOF-5对反应底物具有较宽的适用范围,对于芳香醛和脂肪醛、二级胺和N-烷基取代苯胺、芳香炔和脂肪炔均具有较好的催化活性,而且对于吸电子芳香醛的催化活性大于供电子芳香醛。Au/MOF-5可以循环使用至少3次,催化活性变化不大。
中图分类号:
刘丽丽, 台夕市, 刘美芳, 李玉峰, 冯一民, 孙晓日. Au/MOF-5催化剂在三组分偶联反应中的催化性能[J]. 化工学报, 2015, 66(5): 1738-1747.
LIU Lili, TAI Xishi, LIU Meifang, LI Yufeng, FENG Yimin, SUN Xiaori. Supported Au/MOF-5: a highly active catalyst for three-component coupling reactions[J]. CIESC Journal, 2015, 66(5): 1738-1747.
[1] | Xu Z W, Yu X Q, Feng X J, Bao M. Propargylamine synthesis by copper-catalyzed oxidative coupling of alkynes and tertiary amine N-oxides [J]. J. Org. Chem., 2011, 76 (16): 6901-6905 |
[2] | Farwick A, Helmchem G. Enantioselective total synthesis of (-)-α-kainic acid [J]. Org. Lett., 2010, 12 (5): 1108-1111 |
[3] | Giles R L, Nkansah R A, Looper R E. Synthesis of 2-thio-and 2-oxoimidazoles via cascade addition-cycloisomerization reactions of propargylcyanamides [J]. J. Org. Chem., 2010, 75 (1): 261-264 |
[4] | Wei C M, Li Z G, Li C J. The development of A (3)-coupling (aldehyde-alkyne-amine) and AA (3)-coupling (asymmetric aldehyde-alkyne-amine) [J]. Synlett, 2004, 35 (9): 1472-1483 |
[5] | Xiao F P, Chen Y L, Liu Y, Wang J B. Sequential catalytic process: synthesis of quinoline derivatives by AuCl (3)/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes [J]. Tetrahedron, 2008, 64 (12): 2755-2761 |
[6] | Shi L, Tu Y Q, Wang M, Zhang F M, Fan C A. Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C H activation catalyzed by copper in water [J]. Org. Lett., 2004, 6 (6): 1001-1003 |
[7] | Sreedhar B, Reddy P S, Prakash B V, Ravindra A. Ultrasound-assisted rapid and efficient synthesis of propargylamines [J]. Tetrahedron Lett., 2005, 46: 7019-7022 |
[8] | Kidwai M, Bansal V, Kumar A, Mozumdar S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine [J]. Green Chem., 2007, 9: 742-745 |
[9] | Zhang X, Corma A. Supported gold (Ⅲ) catalysts for highly efficient three-component coupling reactions [J]. Angew. Chem. Int. Ed., 2008, 47 (23): 4358-4361 |
[10] | Fischer R A. Metal-organic frameworks—the new jack of all trades for (inorganic) chemists [J]. Angew. Chem. Int. Ed., 2014, 53 (23): 5716-5717 |
[11] | Zhang Z X, Ding N N, Zhang W H, Chen J X, Young D J, Hor T S A. Stitching 2D polymeric layers into flexible interpenetrated metal-organic frameworks within single crystals [J]. Angew. Chem. Int. Ed., 2014, 53 (18): 4628-4632 |
[12] | Choi S B, Furukawa H, Nam H J, Jung D Y, Jhon Y H, Walton A, Book D, O'Keeffe M, Yaghi O M, Kim J. Reversible interpenetration in a metal-organic framework triggered by ligand removal and addition [J]. Angew. Chem., 2012, 51 (35): 8791-8795 |
[13] | Gao Y, Wu X J, Zeng X C. Designs of fullerene-based frameworks for hydrogen storage [J]. J. Mater. Chem. A, 2014, 2: 5910-5914 |
[14] | Müller M, Turner S, Lebedev O I, Fischer R A. Au@MOF-5 and Au/MOx@MOF-5 (M=Zn, Ti; x=1, 2): preparation and microstructural characterisation [J]. Eur. J. Inorg. Chem., 2011, 12: 1876-1887 |
[15] | Wang X L, Cao J J, Liu G C, Tian A X, Li N, Luan J. A multifunctional reduced molybdophosphate-based 3D metal-organic framework induced by a rigid triazole and a flexible bis (triazole) mixed ligand [J]. Inorg. Chem. Commun., 2014, 47: 108-111 |
[16] | Gole B, Bar A K, Mukherjee P S. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency [J]. Chem. Eur. J., 2014, 20: 2276-2291 |
[17] | Ma Y H, Lin J, Xue Y M, Li J, Huang Y, Tang C C. Acid-assisted hydrothermal synthesis and adsorption properties of high-specific-surface metal-organic frameworks [J]. Mater. Lett., 2014, 132: 90-93 |
[18] | Mu Cuizhi (穆翠枝), Xu Feng (徐峰), Lei Wei (雷威). Application of functional metal oganic framework materials [J]. Progr. Chem. (化学进展), 2007, 19 (9): 1345-1356 |
[19] | Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J. Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis [J]. Chem. Eur. J., 2008, 14: 8204-8212 |
[20] | Wu H, Simmons J M, Liu Y, Brown C M, Wang X S, Ma S Q, Peterson V K, Southon P D, Kepert C J, Zhou H T, Yildirim T, Zhou W. Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? [J]. Chem. Eur. J., 2010, 16: 5205-5214 |
[21] | Wang Keke (王可可), Li Liangsha (李亮莎), Huang Hongliang (黄宏亮), Yang Qingyuan (阳庆元), Zhang Yi (张轶), Wang Shaohua (王少华), Wu Pingyi (吴平易), Lan Ling (兰玲), Liu Dahuan (刘大欢), Zhong Chongli (仲崇立). Control of pore size in Hf-based metal-organic frameworks and exploration of their adsorption properties [J]. CIESC Journal (化工学报), 2014, 65 (5):1696-1705 |
[22] | Duan C J, Jie X M, Liu D D, Cao Y M, Yuan Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks [J]. J. Membr. Sci., 2014, 466: 92-102 |
[23] | Zhang Suoying (张所瀛), Liu Hong (刘红), Liu Pengfei (刘朋飞), Wu Peipei (吴培培), Yang Zhuhong (杨祝红), Yang Qingyuan (阳庆元), Lu Xiaohua (陆小华). Progress of adsorption-based CO2/CH4 separation by metal organic frameworks [J].CIESC Journal (化工学报), 2014, 65 (5):1563-1570 |
[24] | Hang T, Fu D W, Ye Q, Ye H Y, Xiong R G, Huang S D. Tanklike metal-organic framework filled with perchloric acid and its dielectric-ferroelectric properties [J]. Cryst. Growth Des., 2009, 9 (5): 2054-2056 |
[25] | Vyasamudri S Y, Maji T K. Six fold interpenetrated diamondoid network of Cu(Ⅰ): synthesis, structure, selective anion exchange and luminescence properties [J]. Chem. Phys. Lett., 2009, 473: 312-316 |
[26] | Cohen S M. New approaches for medicinal applications of bioinorganic chemistry [J]. Curr. Opin. Chem. Biol., 2007, 11 (2): 115-120 |
[27] | Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Férey G. Metal-organic frameworks as efficient materials for drug delivery [J]. Angew. Chem. Int. Ed., 2006, 45 (36): 5974-5978 |
[28] | Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Reqí M, Sebban M, Taulelle F, Férey G. Flexible porous metal-organic frameworks for a controlled drug delivery [J]. J. Am. Chem. Soc., 2008, 130 (21): 6774-6780 |
[29] | Xamena F X L I, Corma A, Garcia H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors [J]. J. Phys. Chem. C, 2007, 111 (1): 80-85 |
[30] | Zhang W J, Jiang P P, Wang Y, Zhang J, Zheng J W, Zhang P B. Selective oxidation over a metalloporphyrinic metal-organic framework catalyst and insights into the mechanism of bicarbonate ion as co-catalyst [J]. Chem. Eng. J., 2014, 257: 28-35 |
[31] | Horike S, Dincă M, Tamaki K, Long G R. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites [J]. J. Am. Chem. Soc., 2008, 130 (18): 5854-5855 |
[32] | Ying Yunpan (应允攀), Zeng Fanping (曾凡平), Wu Pingyi (吴平易), Yang Qingyuan (阳庆元), Liu Dahuan (刘大欢), Lan Ling (兰玲), Wang Shaohua (王少华), Zhang Yi (张轶), Zhong Chongli (仲崇立). Solvent effect on catalytic properties of microstructures in metal-organic frameworks [J]. CIESC Journal (化工学报), 2014, 65 (5):1652-1659 |
[33] | Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295: 469-472 |
[34] | Li H, Eddaoudi M, Keeffe M O, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402: 276-279 |
[35] | Gao S X, Zhao N, Shu M H, Che S N. Palladium nanoparticles supported on MOF-5: a highly active catalyst for a ligand-and copper-free Sonogashira coupling reaction [J]. Applied Catalysis A: General, 2010, 388: 196-201 |
[36] | Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst [J]. Catal. Commun., 2008, 9: 1286-1290 |
[37] | Phan N T S, Le K K A, Phan T D. MOF-5 as an efficient heterogeneous catalyst for Friedel-Crafts alkylation reactions [J]. Appl. Catal. A , 2010, 382: 246-253 |
[38] | Liu Lili (刘丽丽), Zhang Xin (张鑫), Gao Jinsen (高金森), Xu Chunming (徐春明). Preparation and characterization of metal-organic framework supported gold catalysts and their catalytic performance for three-component coupling reaction [J]. Chin. J. Catal. (催化学报), 2012, 33 (5): 833-841 |
[39] | Liu L L, Zhang X, Gao J S, Xu C M. Engineering metal-organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines [J]. Green Chem., 2012, 14: 1710-1720 |
[40] | Kaye S S, Dailly A, Yaghi O M, Long J R. Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3 (MOF-5) [J]. J. Am. Chem. Soc., 2007, 129 (46): 14176-14177 |
[41] | Hafizovic J, Bjørgen M, Olsbye U, Dietzel P D C, Bordiga S, Prestipino C, Lamberti C, Lillerud K P. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities [J]. J. Am. Chem. Soc., 2007, 129 (12): 3612-3620 |
[42] | Saha D, Wei Z J, Deng S G. Hydrogen adsorption equilibrium and kinetics in metal-organic framework (MOF-5) synthesized with DEF approach [J]. Separation and Purification Technology, 2009, 64: 280-287 |
[43] | Li Q L, Zhang Y H, Chen G X, Fan J Q, Lan H Q, Yang Y Q. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: effect of preparation conditions on surface composition and activity [J]. J. Catal., 2010, 273 (2): 167-176 |
[44] | Stuckert N R, Wang L F, Yang R T. Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework [J]. Langmuir, 2010, 26 (14):11963-11971 |
[45] | Nguyen J G, Cohen S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification [J]. J. Am. Chem. Soc., 2010, 132 (13): 4560-4561 |
[46] | Datta K K R, Reddy B V S, Ariga K, Vinu A. Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction [J]. Angew. Chem. Int. Ed., 2010, 49 (34): 5961-5965 |
[47] | Layek K, Chakravarti R, Kantam M L, Maheswaran H, Vinu A. Nanocrystalline magnesium oxide stabilized gold nanoparticles: an advanced nanotechnology based recyclable heterogeneous catalyst platform for the one-pot synthesis of propargylamines [J]. Green Chem., 2011, 13: 2878-2887 |
[48] | Wei C M, Li C J. A highly efficient three-component coupling of aldehyde, alkyne, and amines via C-H activation catalyzed by gold in water [J]. J. Am. Chem. Soc., 2003, 125 (32): 9584-9585 |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[12] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 861
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 437
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||