化工学报 ›› 2016, Vol. 67 ›› Issue (11): 4523-4532.DOI: 10.11949/j.issn.0438-1157.20160885
舒日洋1,2,3, 徐莹1,2, 张琦1,2, 马隆龙1,2, 王铁军1,2
收稿日期:
2016-06-29
修回日期:
2016-08-23
出版日期:
2016-11-05
发布日期:
2016-11-05
通讯作者:
张琦,zhangqi@ms.giec.ac.cn
基金资助:
国家科技支撑项目(2014BAD02B01);国家自然科学基金项目(51476178)。
SHU Riyang1,2,3, XU Ying1,2, ZHANG Qi1,2, MA Longlong1,2, WANG Tiejun1,2
Received:
2016-06-29
Revised:
2016-08-23
Online:
2016-11-05
Published:
2016-11-05
Supported by:
supported by the National Key Technology R&D Program (2014BAD02B01) and the National Natural Science Foundation of China (51476178).
摘要:
木质素是一种芳环结构来源丰富且价格低廉的可再生资源。从木质素出发催化解聚制备单酚类高附加值精细化学品和芳香烃烷烃等高品位生物燃料,可以部分替代以化石燃料为原料的生产过程,是生物质资源全组分高效综合利用的重要组成部分。在木质素催化解聚方法中,催化氢解可以直接将木质素转化为低氧含量的液体燃料,在生物燃料利用方面展现出巨大的潜力。本文详细总结了木质素的催化解聚方法,从催化剂类型、溶剂种类、反应机理及催化剂循环使用性等方面介绍了国内外的主要研究进展,着重阐述了木质素催化氢解方法。最后总结了当前木质素催化解聚过程中存在的难题,并对未来的技术发展提出了建议和展望。
中图分类号:
舒日洋, 徐莹, 张琦, 马隆龙, 王铁军. 木质素催化解聚的研究进展[J]. 化工学报, 2016, 67(11): 4523-4532.
SHU Riyang, XU Ying, ZHANG Qi, MA Longlong, WANG Tiejun. Progress in catalytic depolymerization of lignin[J]. CIESC Journal, 2016, 67(11): 4523-4532.
[1] | ZAKZESKI J, BRUIJNINCX P C A, JONGERIUS A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem. Rev., 2010, 110:3552-3599. |
[2] | 孔劼琛, 骆治成, 李愽龙, 等. 木质素解聚和加氢脱氧的进展[J]. 中国科学:化学, 2015, 45(5):510-525. KONG J C, LUO Z C, LI B L, et al. Advances in depolymerization and hydrodeoxygenation of lignin[J]. Scientia Sinica:Chimica, 2015, 45:510-525. |
[3] | 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25:839-858. LU Y, WEI Y X, ZONG Z M, et al. Structural investigation and application of lignins[J]. Progress in Chemistry, 2013, 25:839-858. |
[4] | LI C, ZHAO X, WANG A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem. Rev., 2015, 115(21):11559-11624. |
[5] | KUBO S, KADLA J F. Hydrogen bonding in lignin:a Fourier transform infrared model compound study[J]. Biomacromolecules, 2005, 6:2815-2821. |
[6] | BRUNOW G. Biorefineries-Industrial Processes and Products[M]. Wiley-VCH Verlag, 2006:151. |
[7] | 郭京波, 陶宗娅, 罗学刚. 竹木质素的红外光谱与X射线光电子能谱分析[J]. 化学学报, 2005, 63(16):1536-1540. GUO J B, TAO Z Y, LUO X G. Analysis of bamboo lignin with FTIR and XPS[J]. Acta Chim. Sinica, 2005, 63(16):1536-1540. |
[8] | YAGHOUBI K, PAZOUKI M, SHOJAOSADATI S A. Variable optimization for biopulping of agricultural residues by Ceriporiopsis subvermispora[J]. Bioresour. Technol., 2008, 99(10):4321-4328. |
[9] | LI S H, LIU S Q, COLMENARES J C, et al. A sustainable approach for lignin valorization by heterogeneous photocatalysis[J]. Green Chem., 2016, 18:594-607. |
[10] | CRESTINI C, DAURIA M. Singlet oxygen in the photodegradation of lignin models[J]. Tetrahedron, 1997, 53(23):7877-7888. |
[11] | 陈磊, 陈汉平, 陆强, 等. 木质素结构及热解特性[J]. 化工学报, 2014, 65(9):3626-3633. CHEN L, CHEN H P, LU Q, et al. Characterization of structure and pyrolysis behavior of lignin[J]. CIESC Journal, 2014, 65(9):3626-3633. |
[12] | 程辉, 余剑, 姚梅琴, 等. 木质素慢速热裂解机理[J]. 化工学报, 2013, 64(5):1757-1765. CHENG H, YU J, YAO M Q, et al. Mechanism analysis of lignin slow pyrolysis[J]. CIESC Journal, 2013, 64(5):1757-1765. |
[13] | 武书彬, 向冰莲, 刘江燕, 等. 工业碱木素热裂解特性研究[J]. 北京林业大学学报, 2008, 30(5):143-147. WU S B, XIANG B L, LIU J Y, et al. Pyrolysis characteristics of technical alkali lignin[J]. Journal of Beijing Forestry University, 2008, 30(5):143-147. |
[14] | NAIR V, VINU R. Production of guaiacols via catalytic fast pyrolysis of alkali lignin using titania, zirconia and ceria[J]. J. Anal. Appl. Pyrol., 2016, 119:31-39. |
[15] | CUSTODIS V B, KARAKOULIA S A, TRIANTAFYLLIDIS K S, et al. Catalytic fast pyrolysis of lignin over high-surface-area mesoporous aluminosilicates:effect of porosity and acidity[J]. ChemSusChem, 2016, 9:1134-1145. |
[16] | AMEN-CHEN C, PAKDEL H, ROY C. Production of monomeric phenols by thermochemical conversion of biomass[J]. Bioresour. Technol., 2001, 79:277-299. |
[17] | SCHUCHARDT U, RODRIGUES J A R, COTRIM A, et al. Liquefaction of hydrolytic eucalyptus lignin with formate in water, using batch and continuous-flow reactors[J]. Bioresour. Technol., 1993, 44(2):123-129. |
[18] | MULLEN C A, BOATENG A A. Catalytic pyrolysis-GC/MS of lignin from several sources[J]. Fuel Process. Technol., 2010, 91:1446-1458. |
[19] | SHAFIZADEH F, CHIN P P S. Thermal deterioration of wood[J]. Wood Technol.:Chem. Aspects, Symposium, 1976, 43:57-81. |
[20] | SERIO M E, BASSILAKIS R, SOLOMON P R. Production of carbon materials from biomass[J]. Division Fuel Chem., 1991, 36:1110-1118. |
[21] | DOMBERGS G, KIRSBAUMS I, DOBELE G, et al. Effect of alkaline additives on the formation of phenols during lignin pyrolysis[J]. Koksnes Kimija, 1976, 5:73-80. |
[22] | KLEEN M, GELLERSTEDT G. Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps[J]. J. Anal. Appl. Pyrol., 1995, 35:15-41. |
[23] | 金强, 张红漫, 徐锐, 等. 半纤维素稀酸循环喷淋冲滤水解动力学[J]. 化工学报, 2011, 62(1):103-110. JIN Q, ZHANG H M, XU R, et al. Kinetics of hemicellulose hydrolysis by dilute acid with cycle spray flow-through[J]. CIESC Journal, 2011, 62(1):103-110. |
[24] | LONG J X, LOU W Y, WANG L F, et al.[C4H8SO3Hmim]HSO4 as an efficient catalyst for direct liquefaction of bagasse lignin:decomposition properties of the inner structural units[J]. Chem. Eng. Sci., 2015, 122:24-33. |
[25] | LIGUORI L, BARTH T. Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water[J]. J. Anal. Appl. Pyrol., 2011, 92(2):477-484. |
[26] | GOSSELINK R J, TEUNISSEN W, VAN DAM J E, et al. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals[J]. Bioresour. Technol., 2012, 106:173-177. |
[27] | ZHANG X H, ZHANG Q, LONG J X, et al. Phenolics production through catalytic depolymerization of alkali lignin with metal chlorides[J]. Bioresources, 2014, 9(2):3347-3360. |
[28] | TOLEDANO A, SERRANO L, BALU A M, et al. Fractionation of organosolv lignin from olive tree clippings and its valorization to simple phenolic compounds[J]. ChemSusChem, 2013, 6(3):529-536. |
[29] | SINGH S K, EKHE J D. Towards effective lignin conversion:HZSM-5 catalyzed one-pot solvolytic depolymerization/hydrodeoxygenation of lignin into value added compounds[J]. RSC Advances, 2014, 4(53):27971-27978. |
[30] | DEEPA A K, DHEPE P L. Lignin depolymerization into aromatic monomers over solid acid catalysts[J]. ACS Catal., 2014, 5:365-379. |
[31] | KONNERTH H, ZHANG J G, MA D, et al. Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water[J]. Chem. Eng. Sci., 2015, 123:155-163. |
[32] | TOLEDANO A, SERRANO L, LABIDI J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization[J]. Fuel, 2014, 116:617-624. |
[33] | LONG J X, ZHANG Q, WANG T J, et al. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran[J]. Bioresour. Technol., 2014, 154:10-17. |
[34] | KOVALENKO E I, SMIRNOV V A, SHALIMOV V N. Effect of anode material and electrolysis time on the directivity of the electrochemical oxidation of hydrolytic lignin[J]. Zhurnal Prikladnoi Khimii, 1977, 50(8):1741-1744. |
[35] | DIAZ-GONZALEZ M, VIDAL T, TZANOV T. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignin[J]. Appl. Microbiol. Biotechnol., 2011, 89:1693-1700. |
[36] | 陈婷, 陈云平, 张英, 等. TiO2光催化氧化降解高沸醇木质素的研究[J]. 纤维素科学与技术, 2010, 18(4):13-18. CHEN T, CHEN Y P, ZHANG Y. et al. Study on degradation of high boiling solvent lignin by TiO2 photochemical catalysis[J]. Cellulose Sci. Technol., 2010, 18(4):13-18. |
[37] | ZHANG J, LIU Y, CHIBA S, et al. Chemical conversion of beta-O-4 lignin linkage models through Cu-catalyzed aerobic amide bond formation[J]. Chem. Commun., 2013, 49:11439-11441. |
[38] | OUYANG X P, RUAN T, QIU X Q. Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds[J]. Fuel Process. Technol., 2016, 144:181-185. |
[39] | YANG Q, SHI J, LIN L, et al. Characterization of changes of lignin structure in the processes of cooking with solid alkali and different active oxygen[J]. Bioresour. Technol., 2012, 123:49-54. |
[40] | RAHIMI A, ULBRICH A, COON J J, et al. Formic-acid-induced depolymerization of oxidized lignin to aromatics[J]. Nature, 2014, 515(7526):249-252. |
[41] | YE Y Y, ZHANG Y, FAN J, et al. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis[J]. Bioresour. Technol., 2012, 118:648-651. |
[42] | VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy Environ. Sci., 2015, 8(6):1748-1763. |
[43] | VAN DEN BOSCH S, SCHUTYSER W, KOELEWIJN S F, et al. Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood[J]. Chem. Commun., 2015, 51:13158-13161. |
[44] | PEPPER J M. Lignin and related compounds(I):A comparative study of catalysts for lignin hydrogenolysis[J]. Can. J. Chem., 1969, 47(5):723-727. |
[45] | XU W, MILLER S J, AGRAWAL P K, et al. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid[J]. ChemSusChem, 2012, 5(4):667-675. |
[46] | PARSELL T H, OWEN B C, KLEIN I, et al. Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis[J]. Chem. Sci., 2013, 4(2):806-813. |
[47] | PARSELL T, YOHE S, DEGENSTEIN J, et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J]. Green Chem., 2015, 17(3):1492-1499. |
[48] | SHU R Y, LONG J X, YUAN Z Q, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C[J]. Bioresour. Technol., 2015, 179:84-90. |
[49] | SHU R Y, LONG J X, XU Y, et al. Investigation on the structural effect of lignin during the hydrogenolysis process[J]. Bioresour. Technol., 2016, 200:14-22. |
[50] | ZHAO C, LERCHER J A. Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts[J]. ChemCatChem, 2012, 4(1):64-68. |
[51] | YAN N, ZHAO C, DYSON P J, et al. Selective degradation of wood lignin over noble-metal catalysts in a two-step process[J]. ChemSusChem, 2008, 1(7):626-629. |
[52] | LONG J X, XU Y, WANG T J, et al. Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination[J]. Appl. Energy, 2015, 141:70-79. |
[53] | BOUXIN F P, MCVEIGH A, TRAN F, et al. Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst(part 1):Impact of the lignin structure[J]. Green Chem., 2015, 17(2):1235-1242. |
[54] | LUO Z C, WANG Y M, HE M Y, et al. Precise oxygen scission of lignin derived aryl ethers to quantitatively produce aromatic hydrocarbons in water[J]. Green Chem., 2016, 18:433-441. |
[55] | SONG Q, WANG F, XU J. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts[J]. Chem. Commun., 2012, 48(56):7019-7021. |
[56] | SONG Q, WANG F, ZHANG J J, et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy Environ. Sci., 2013, 6(3):994-1007. |
[57] | TOLEDANO A, SERRANO L, PINEDA A, et al. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis:catalyst screening[J]. Appl. Catal. B:Environ., 2014, 145:43-55. |
[58] | LONG J X, SHU R Y, YUAN Z Q, et al. Efficient valorization of lignin depolymerization products in the present of NixMg1-xO[J]. Appl. Energy, 2015, 157:540-545. |
[59] | MACALA G S, MATSON T D, JOHNSON C L, et al. Hydrogen transfer from supercritical methanol over a solid base catalyst:a model for lignin depolymerization[J]. ChemSusChem, 2009, 2(3):215-217. |
[60] | BARTA K, MATSON T D, FETTIG M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J]. Green Chem., 2010, 12(9):1640-1647. |
[61] | BARTA K, FORD P C. Catalytic conversion of nonfood woody biomass solids to organic liquids[J]. Accounts Chem. Res., 2014, 47(5):1503-1512. |
[62] | BARTA K, WARNER G, BEACH E S, et al. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides[J]. Green Chem., 2014, 16:191-196. |
[63] | HUANG X M, KORANYI T I, BOOT M D, et al. Catalytic depolymerization of lignin in supercritical ethanol[J]. ChemSusChem, 2014, 7(8):2276-2288. |
[64] | HUANG X M, KORANYI T I, BOOT M D, et al. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics[J]. Green Chem., 2015, 17:4941-4950. |
[65] | HUANG X M, ATAY C, KORANYI T I, et al. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol[J]. ACS Catal., 2015, 5(12):7359-7370. |
[66] | 隋鑫金, 武书彬. 工业碱木素热化学转化制备酚类化学品[J]. 化工学报, 2011, 62(6):1763-1769. SUI X J, WU S B. Preparation of phenols using thermal chemical conversion of industrial kraft lignin[J]. CIESC Journal, 2011, 62(6):1763-1769. |
[67] | ZHANG J G, ASAKURA H, VAN RIJN J, et al. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals[J]. Green Chem., 2014, 16(5):2432-2437. |
[68] | ZHANG J G, TEO J, CHEN X, et al. A series of NiM (M=Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water[J]. ACS Catalysis, 2014, 4(5):1574-1583. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[10] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[11] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[12] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[13] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[14] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[15] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 737
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||