化工学报 ›› 2016, Vol. 67 ›› Issue (11): 4533-4540.DOI: 10.11949/j.issn.0438-1157.20160556
柯平超, 刘志宏, 刘智勇, 李玉虎, 刘付朋
收稿日期:
2016-04-27
修回日期:
2016-07-28
出版日期:
2016-11-05
发布日期:
2016-11-05
通讯作者:
刘志宏,zhliu@mail.csu.edu.com
基金资助:
国家自然科学基金项目(51574285)。
KE Pingchao, LIU Zhihong, LIU Zhiyong, LI Yuhu, LIU Fupeng
Received:
2016-04-27
Revised:
2016-07-28
Online:
2016-11-05
Published:
2016-11-05
Supported by:
supported by the National Natural Science Foundation of China (51574285).
摘要:
综述了固砷矿物臭葱石的组成与结构性能,及其浸出稳定性研究现状。不同条件下制备的臭葱石样品,会因SO42-夹杂和结晶水量变化,具有不同的组成。已提出双齿双核和双齿单核两种臭葱石结构模型,两者是否属实尚存在争议。臭葱石的溶度积介于10-21.17~10-25.83之间波动。在弱酸性(pH 2~6)、氧化条件下,臭葱石浸出稳定性较高,能较好满足长期堆存要求;而在强酸性或碱性区域,或在还原性条件下,其浸出稳定性较差。
中图分类号:
柯平超, 刘志宏, 刘智勇, 李玉虎, 刘付朋. 固砷矿物臭葱石组成与结构及其浸出稳定性研究现状[J]. 化工学报, 2016, 67(11): 4533-4540.
KE Pingchao, LIU Zhihong, LIU Zhiyong, LI Yuhu, LIU Fupeng. Research status on composition, structure, and leaching stability of an arsenic solidification mineral scorodite[J]. CIESC Journal, 2016, 67(11): 4533-4540.
[1] | HOPKIN W. The problem of arsenic disposed in non-ferrous metals production[J]. Environmental Geochemistry and Health, 1989, 11(3/4):101-112. |
[2] | BOWELL R J. Sulphide oxidation and arsenic speciation in tropical soils[J]. Environ. Geochem. Health, 1994, 16:84. |
[3] | BOWELL R J, PARSHLEY J. Arsenic cycling in the mining environment. Characterization of waste, chemistry, and treatment and disposal[C]//Proceedings and Summary Report on U.S. EPA Workshop on Managing Arsenic Risks to the Environment. Denver, Colorado, USA, 2001. |
[4] | BOWELL R J, PARSHLEY J V. Control of pit-lake water chemistry by secondary minerals, Summer Camp pit[J]. Getchell Mine, Nevada. Chem. Geol., 2005, 215:373-385. |
[5] | WANG S L, MULLIGAN C N. Occurrence of the arsenic contamination in Canada:sources, behavior and distribution[J]. Science of the Total Environment, 2006, 366:701-721. |
[6] | RIVEROS G, UTIGARD T A. Disposal of arsenic in copper discharge slags[J]. Journal of Hazardous Materials, 2000, B77:241-252. |
[7] | 邱定蕃. 有色冶金与环境保护[M]. 长沙:中南大学出版社, 2015:288. QIU D F. Nonferrous Metallurgy and Environment Protection[M]. Changsha:CSU Press, 2015:288. |
[8] | FILIPPOU D, GEORGE P, DEMOPOLPUS G P. Arsenic immobilization by controlled scorodite precipitation[J]. Journal of Metal, 1997, (12):52-55. |
[9] | PAUL M R. Arsenic encapsulation using Portland cement with ferrous sulfate/lime and Terra-bandTM technologies-microcharacterization and leaching studies[J]. Science of the Total Environment, 2012, 420:300-312. |
[10] | ZHU Y N, ZHANG X H, XIE Q L, et al. Solubility and stability of calcium arsenates at 25℃[J]. Water, Air, and Soil Pollution, 2006, 169:221-238. |
[11] | WEJHAM N J, MALATTA K A, VUKCEVIC S. The stability of iron phases presently used for disposal from metallurgical system-a review[J]. Mineral Engineering, 2000, 13(8/9):911-931. |
[12] | MONHEMIUS A J, SWASH P M. Removing and stabilizing As from copper refining circuits by hydrothermal processing[J]. Journal of Metal, 1999, (9):30-33. |
[13] | DRAHOTA P, FILIPPI M. Secondary arsenic minerals in then environment:a review[J]. Environment International, 2009, 35:1243-1255. |
[14] | GOMEZ M A, BECZE L, CUTLER J N, et al. Hydrothermal reaction chemistry and characterization of ferric arsenate phases precipitated from Fe2(SO4)3-As2O5-H2SO4 solutions[J]. Hydrometallurgy, 2011, 107:74-90. |
[15] | BERRE J F L, GAUVIN R, DEMOPOULOS G P. A study of the crystallization kinetics of scorodite via the transformation of poorly crystalline ferric arsenate in weakly acidic solution[J]. Colloids and Surface, 2008, 315:117-129. |
[16] | DUTRIZAC J E, JAMBOR J L. The synthesis of crystalline scorodite, FeAsO4·2H2O[J]. Hydrometallurgy, 1988, (3):377-384. |
[17] | DEMOPOULOS G P, DROPPERT D J, VEERT G. V. Precipitation of crystalline scorodite (FeAsO·2H2O) from chloride solutions[J]. Hydrometallurgy, 1995, 38:245-261. |
[18] | FUJITA T, TAGUCHI R, ABUMIYA M, et al. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution(PartⅠ)[J]. Hydrometallurgy, 2008, 90:92-102. |
[19] | 刘志宏, 杨校锋, 刘智勇, 等. 制备方法对臭葱石浸出稳定性的影响[J]. 过程工程学报, 2015, (3):412-417. LIU Z H, YANG X F, LIU Z Y, et al. Effects of synthesis methods for scorodite on its leaching stability[J]. The Chinese Journal of Process Engineering, 2015, (3):412-417. |
[20] | KITAMURA Y, OKAWA H, KOTA T, et al. Effect of ultrasound intensity on the size and morphology of synthesized scorodite particles[J]. Advance Powder Technology, 2016, 27:891-897. |
[21] | OKIBE N, KOGA M, MORISHITAS, et al. Microbial formation of crystalline scorodite for treatment of As(III)-bearing copper refinery process solution using Acidianus brierleyi[J]. Hydrometallurgy, 2014, 143:34-41. |
[22] | 曹俊雅, 叶栩文, 杜娟, 等. 铁氧化菌对含砷溶液中砷沉淀和臭葱石晶体形成的影响[J]. 过程工程学报, 2015, 15(2):307-312. CAO J Y, YE Y W, DU J, et al. Effects of iron oxidation bacteria on arsenic precipitation and the formation of crystalline scorodite from arsenic-containing solution[J]. The Chinese Journal of Process Engineering, 2015, 15(2):307-312. |
[23] | GOMEZ M A, BECZE L, CUTLE J N, et al. Hydrothermal reaction chemistry and characterization of ferric arsenate phases precipitated from Fe2(SO4)3-As2O5-H2SO4 solutions[J]. Hydrometallurgy, 2011, 107:74-90. |
[24] | FUJITA T, TAGUCHI R, ABUMIYA M, et al. Effects of zinc, copper and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process[J]. Hydrometallurgy, 2008, 93:30-38. |
[25] | KRAUSE E, ETTEL V A. Solubilities and stabilities of ferric arsenate compounds[J]. Hydrometallurgy, 1989, 22:311-337. |
[26] | KOSSOFF D, WELCH M D, HUDSON-EDWARDS K A. Scorodite precipitation in the presence of antimony[J]. Chemical Geology, 2015, 406:1-9. |
[27] | JIANG D T, CHEN N, DEMOPOULOS G P, et al. Response to the comment by D. Paktunc on "Structural characterization of poorly-crystalline scorodite, iron(Ⅲ)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy"[J]. Geochimica et Cosmochimica Acta, 2010, 74:4597-4602. |
[28] | CHEN N, JIANG D T, CUTLER J, et al. Structural characterization of poorly-crystalline scorodite, iron(Ⅲ)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy[J]. Geochimica et Cosmochimica Acta, 2009, 73:3260-3276. |
[29] | GOMEZ M A, ASSAAOUDI H, BECZE L, et. al. Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4·2H2O), ferric arsenate sub-hydrate (FAsH; FeAsO4·0.75 H2O) and basic ferric arsenate sulphate (BFAS; Fe[(AsO4)1-x(SO4)x(OH)x]·wH2O)[J]. Journal of Raman Spectroscopy, 2010, 41(41):212-221. |
[30] | PAKTUNC D, DUTRIZAC J, GERTSMAN V. Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite:implications for arsenic mobility[J]. Geochimica et Cosmochimica Acta, 2008, 72:2649-2672. |
[31] | PAKTUNC D. Comment on "Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy" by N. Chen, D.T. Jiang, J. Cutler, T. Kotzer, Y.F. Jia, G.P. Demopoulos and J.W. Rowson[J]. Geochimica et Cosmochimica Acta, 2010, 74:4589-4596. |
[32] | 储旺盛. T-EXAFS研究过渡金属二硼化物的晶格动力学行为及其同位素效应[D]. 安徽:中国科学技术大学, 2007. CHU W S. The lattice dynamics behavior of the second transition metal boride and isotope effect studied by T-EXAFS[D]. Anhui:University of Science and Technology of China, 2007. |
[33] | MAJZLAN J, DRAHOTA P, FILIPPI M, et al. Thermodynamic properties of scorodite and parascorodite (FeAsO4·2H2O), Kankite (FeAsO4·3.5H2O), and FeAsO4[J]. Hydrometallurgy, 2012, 117:47-56. |
[34] | Environment Protection Agency of US. Information and documentation-rules for bibliographic references and citations to information resources:1311[S]. Washington, DC, 1992. |
[35] | CHUKHLANTSEV V G. The solubility products of a number of arsenates[J]. Anal. Chem. (USSR), 1956, (11):565-571. |
[36] | NISHIMURA T, ROBINS R G. Crystalline phases in the system Fe(Ⅲ)-As(Ⅴ)-H2O at 25℃[C]//DUTRIZAC J E, HARRIS G B. Iron Control and Disposal. Proceedings of the 2nd International Symposuim on Iron Control in Hydrometallurgy. Ottawa, Canada, 1996:521-533. |
[37] | MAKHMETOV M Z, SAGADIEVA A K, CHUPTRAKOV V I. Solubility of iron arsenate[J]. Appl. Chem. (USSR), 1981, (54):823-824. |
[38] | DOVE P M, RIMSTIDT J D. The solubility and stability of scorodite, FeAsO4·2H2O[J]. Am. Miner., 1985, 70:838-844. |
[39] | KRAUSE E, ETTEL V A. Solubilities and stabilities of ferric arsenate compounds[J]. Hydrometallurgy, 1989, 22:311-337. |
[40] | KRAUSE E, ETTEL V A. Ferric arsenate compounds:are they environmentally safe? Solubilities of basic ferric arsenates[C]//OLIVER A J. Impurity Control and Disposal 15th Annual Hydrometallurgy Meeting. Montreal, Canada:Canadian Institute of Mining, Metallurgy and Petroleum, 1985:5. |
[41] | ROBINS R G. Solubility and stability of scorodite, FeAsO4·2H2O:discussion[J]. Am. Miner., 1987, 72:842-844. |
[42] | ROBINS R G. The stability and solubility of ferric arsenate-an update[C]//GASKELL D R. EPD Congress 90. TMS Annual Meeting, 1990:93-104. |
[43] | ZHU Y N, MERKEL B J. The dissolution and solubility of scorodite, FeAsO4·2H2O-evaluation and simulation with PHREEQC2, Wiss[J]. Mitt. Inst. fur Geologie, TU Bergakedemie Freiberg, German, 2001, 18:1-12. |
[44] | LANGMUIR D, MACDONALD M, ROWSON A. Predicting arsenic concentrations in the porewaters of buried uranium mill tailings[J]. Geochim. Cosmochim. Acta, 1999, 63:3379-3394. |
[45] | LANGMUIR D, MACDONALD M, ROWSON A. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings[J]. Geochim. Cosmochim. Acta, 2006, 70:2942-2956. |
[46] | BLUTEAU M C, DEMOPOULOS G P. The incongruent dissolution of scorodite-solubility, kinetics and mechanism[J]. Hydrometallurgy, 2007, 87:163-177. |
[47] | MAJZLAN J, DRAHOTA P, FILIPPI M. Secondary arsenic minerals in the environment:a review[J]. Environment International, 2009, 35:1243-1255. |
[48] | 中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3-2007[S]. 北京:中国标准出版社, 2007. State Environmental Protection Administration and General Administration of Quality Supervision of the People's Republic of China, Standardization Administration of the People's Republic of China. Identification standards for hazardous wastes-identification for extraction toxicity:GB 5080.3-2007[S]. Beijing:Standards Press of China, 2007. |
[49] | PAKTUNC D, BRUGGEMAN K. Solubility of nanocrystalline scorodite and amorphous ferric arsenate:implications for stabilization of arsenic in mine wastes[J]. Applied Geochemistry, 2010, 25:674-683. |
[50] | FUJITA T, FUJIEDA S, SHINODA K, et al. Environmental leaching characteristics of scorodite synthesized with Fe(II) ions[J]. Hydrometallurgy, 2012, 111/112:87-102. |
[51] | FUJITA T, TAGUCHI R, KUBO H, et al. Imobilization of arsenic from novel synthesized scorodite-analysis on solubility and stability[J]. Master Tras., 2008, (2):321-331. |
[52] | MIN X B, LIAO Y P, CHAI L Y, et al. Removal and stabilization of arsenic from anode slime by forming crystal scorodite[J]. Trans. Nonferrous Met. Soc. China, 2015, 25:1298-1306. |
[53] | DOERFELT C, FELDMANN T, DAENZER R, et al. Stability of continuously produced Fe(II)/Fe(III)/As(V) co-precipitates under periodic exposure to reducing agents[J]. Chemosphere, 2015, 138:239-246. |
[54] | ADELMAN J G, ELOUATIK S, DEMOPOULOS G P. Investigation of sodium silicate-derived gels as encapsulants for hazardous materials-the case of scorodite[J]. Journal of Hazardous Materials, 2015, 192:108-117. |
[55] | 张亭栋, 李元善. 癌灵Ⅰ号治疗急性粒细胞白血病临床分析及实验研究[J]. 中西医结合杂志, 1984, 4(1):19-20. ZHANG T D, LI Y S. Clinical analysis and experimental research of acute granulocytic leukemia by Ailing-1[J]. Chinese Journal of Integrated Traditional and Western Medicine, 1984, 4(1):19-20. |
[56] | MISHRA K K, UPADHYAY G K, UPADHAYAYA K S. Crystal synamic study of gallium arsenide (GaAs) using a theoretical approach of van der Waals three-body force shell model (VTSM)[J]. Physical Science International Journal, 2012, 2(2):91-106. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[13] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[14] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[15] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 833
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 546
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||