化工学报 ›› 2017, Vol. 68 ›› Issue (6): 2249-2257.DOI: 10.11949/j.issn.0438-1157.20161329
张晓东, 李红欣, 侯扶林, 杨阳, 董寒, 崔立峰
收稿日期:
2016-09-21
修回日期:
2017-03-05
出版日期:
2017-06-05
发布日期:
2017-06-05
通讯作者:
张晓东
基金资助:
国家自然科学基金项目(21507086,51508327);上海市青年科技英才扬帆计划项目(14YF1409900,16YF1408100)
ZHANG Xiaodong, LI Hongxin, HOU Fulin, YANG Yang, DONG Han, CUI Lifeng
Received:
2016-09-21
Revised:
2017-03-05
Online:
2017-06-05
Published:
2017-06-05
Contact:
10.11949/j.issn.0438-1157.20161329
Supported by:
supported by the National Natural Science Foundation of China (21507086, 51508327) and the Shanghai Sailing Program (14YF1409900, 16YF1408100)
摘要:
锰作为一种常见的变价金属,其在催化反应中能够起到很好的催化作用。而且锰的氧化物作为最常用的过渡金属氧化物之一,因其较易调控出较大的比表面积、较强的吸附性能、较好的氧化还原能力以及较好的低温催化活性,已经成为了环境治理以及能源领域中的研究热点。介绍了MnOx催化剂材料的合成、性质,以及在CO催化氧化、挥发性有机污染物的催化氧化、气体的吸附与分离以及电池的电极材料等应用方面一些最新的研究进展。
中图分类号:
张晓东, 李红欣, 侯扶林, 杨阳, 董寒, 崔立峰. 锰氧化物材料的制备及应用进展[J]. 化工学报, 2017, 68(6): 2249-2257.
ZHANG Xiaodong, LI Hongxin, HOU Fulin, YANG Yang, DONG Han, CUI Lifeng. Progress in preparation of MnOx and its application[J]. CIESC Journal, 2017, 68(6): 2249-2257.
[1] | CHEN Y, ZHANG M L, JING X Y. Preparation and characterization of rod-shaped MnO2 crystal[J]. Solid State Communications, 2005, 133: 121-123. |
[2] | LI X L, LI W J, CHEN X Y, et al. Hydrothermal synthesis and characterization of orchid-like MnO2 nanostructures[J]. Journal of Crystal Growth, 2006, 297: 387-389. |
[3] | YUAN Z Y, ZHANG Z L, DU D H, et al. A simple method to synthesise single-crystalline manganese oxide nanowires[J]. Chem. Phys. Lett., 2003, 378: 349-353. |
[4] | XIA H, FENG J K, WANG H L, et al. MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors[J]. Journal of Power Sources, 2010, 195: 4410-4413. |
[5] | CHEN Z W, JIAO Z, PAN D Y, et al. Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure[J]. Chem. Rev., 2012, 112: 3833-3855. |
[6] | QI G S, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2004, 51: 93-106. |
[7] | TANG X F, LI J H, SUN L, et al. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3[J]. Applied Catalysis B: Environmental, 2010, 99: 156-162. |
[8] | RAMESH K, CHEN L W, CHEN F X, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts[J]. Catalysis Today, 2008, 131: 477-482. |
[9] | WANG X Y, LIU L, WANG X Y, et al. Mn2O3/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors[J]. Materials Science and Engineering B, 2011, 176: 1232-1238. |
[10] | HUANG M, LI F, DONG F, et al. MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(43): 21380-21423. |
[11] | WANG J G, KANG F Y, WEI B Q. Engineering of MNO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74: 51-124. |
[12] | CAO J Y, LI X H, WANG Y M, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors[J]. Journal of Power Sources, 2015, 293: 657-674. |
[13] | ZHAO J C, WANG J, XU J L. Synthesis and electrochemical characterization of mesoporous MnO2[J]. Journal of Chemistry, 2015, 2015: 768023-768028. |
[14] | ATHOUEL L, MOSER F, DUGAS R, et al. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte[J]. J. Phys. Chem. C, 2008, 112: 7270-7277. |
[15] | SCHMACHTEL S, TOIMINEN M, KONTTURI K, et al. New oxygen evolution anodes for metal electrowinning: MnO2 composite electrodes[J]. J. Appl. Electrochem., 2009, 39: 1835-1848. |
[16] | ZHU G, LI H J, DENG L J, et al. Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance[J]. Materials Letters, 2010, 64: 1763-1765. |
[17] | DAI Y H, JIANG H, HU Y J, et al. Hydrothermal synthesis of hollow Mn2O3 nanocones as anode material for Li-ion batteries[J]. RSC Adv., 2013, 3: 19778-19781. |
[18] | GUO M X, BIAN S W, SHAO F, et al. Hydrothermal synthesis and electrochemical performance of MnO2/graphene/polyester composite electrode materials for flexible supercapacitors[J]. Electrochimica Acta, 2016, 209: 486-497. |
[19] | ZHAO Y C, MISCH J, WANG C A. Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials[J]. Mater. Electron., 2016, 27: 5533-5542. |
[20] | LU X L, ZHENG Y Y, ZHANG Y B, et al. Low-temperature selective catalytic reduction of NO over carbon nanotubes supported MnO2 fabricated by co-precipitation method[J]. Micro & Nano Letters, 2015, 10(11): 666-669. |
[21] | NATHSARMA K C, ROUT P C, SARANGI K. Manganese precipitation kinetics and cobalt adsorption on MnO2 from the ammoniacal ammonium sulfate leach liquor of Indian Ocean manganese nodule[J]. Hydrometallurgy, 2013, 133: 133-138. |
[22] | MORADKHANI D, MALEKZADEH M, AHMADI E. Nanostructured MnO2 synthesized via methane gas reduction of manganese ore and hydrothermal precipitation methods[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 134-139. |
[23] | HLAING A A, PHYUWIN P. The synthesis of α-MnO2 nanorods using hydrothermal homogeneous precipitation[J]. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, 3: 25001-25003. |
[24] | DONNE S W, HOLLENKAMP A, JONESA B C. Structure, morphology and electrochemical behavior of manganese oxides prepared by controlled decomposition of permanganate[J]. Journal of Power Sources, 2010, 195: 367-373. |
[25] | FANG D L, WU B C, MAO A Q, et al. Super capacitive properties of ultra-fine MnO2 prepared by a solid-state coordination reaction[J]. Journal of Alloys and Compounds, 2010, 507: 526-530. |
[26] | HAO Q, XU L Q, LI G D, et al. Synthesis of MnO/C composites through a solid state reaction and their transformation into MnO2 nanorods[J]. Journal of Alloys and Compounds, 2011, 509: 6217-6221. |
[27] | CAO X, GUO G H, LIU F F, et al. The properties of LiMn2O4 synthesized by molten salt method using MnO2 as manganese source recycled from spent Zn-Mn batteries[J]. International Journal of Electrochemical Science, 2015, 10(5): 3841-3847. |
[28] | PENG R C, WU N, ZHENG Y, et al. Large-scale synthesis of metal-ion-doped manganese dioxide for enhanced electrochemical performance[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8474-8480. |
[29] | PICASSO G, SUN KOU M D R, SALAZAR I, et al. Synthesis of nanostructured catalysts based on Mn oxide for n-hexane elimination[J]. Rev. Soc. Quím. Perú, 2011, 77(1): 11-26. |
[30] | KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Appl. Catal. B, 2010, 98: 180-185. |
[31] | SHI F, WANG F, DAI H, et al. Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene[J]. Applied Catalysis A: General, 2012, 433/434: 206-213. |
[32] | ZHANG J, LI Y, WANG L, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catal. Sci. Technol., 2015, 5: 2305-2313. |
[33] | LI D, YANG J, TANG W, et al. Controlled synthesis of hierarchical MnO2 microspheres with hollow interiors for the removal of benzene[J]. RSC Adv., 2014, 4: 26796-26803. |
[34] | JIN L, CHEN C H, CRISOSTOMO V M B, et al. γ-MnO2 octahedral molecular sieve: preparation, characterization, and catalytic activity in the atmospheric oxidation of toluene[J]. Appl. Catal. A., 2009, 355: 169-175. |
[35] | LI Y Z, FAN Z Y, SHI J W, et al. Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts [J]. Chem. Eng. J., 2014, 241: 251-258. |
[36] | LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
[37] | ZHANG X D, DONG H, WANG Y, et al. Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation[J]. Chemical Engineering Journal, 2016, 283: 1097-1107. |
[38] | ZHANG X D, DONG H, ZHAO D, et al. Effect of support calcination temperature on Ag structure and catalytic activity for CO oxidation[J]. Chem. Res. Chin. Univ., 2016, 32(3): 455-460. |
[39] | QU Z P, ZHANG X D, YU F L, et al. Role of the Al chemical environment in the formation of silver species and its CO oxidation activity[J]. Journal of Catalysis, 2015, 321: 113-122. |
[40] | ZHANG X D, QU Z P, YU F L, et al. Progress in carbon monoxide oxidation over nanosized Ag catalysts (review) [J]. Chinese Journal of Catalysis, 2013, 34(7): 1277-1290. |
[41] | LEI T, DENG Q, ZHANG S, et al. Fast identification of CO by using single Pt-modified WO3 sensing film based on optical modulation[J]. Sensors and Actuators B: Chemical, 2016, 232: 506-513. |
[42] | GAO H W. CO oxidation mechanism on the gamma-Al2O3 supported single Pt atom: first principle study[J]. Applied Surface Science, 2016, 379: 347-357. |
[43] | KIM G J, KWON D W, HONG S C. Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature[J]. Journal of Physical Chemistry C, 2016, 120(32): 17996-18004. |
[44] | SHIPITCYNA A, KINNUNEN N M, HILLI Y, et al. Characterization and activity of Pd-Ir catalysts in CO and C3H6 oxidation under stoichiometric conditions[J]. Topics in Catalysis, 2016, 59(13/14): 1097-1103. |
[45] | BAI Y, WANG C L, ZHOU X Y, et al. Atomic layer deposition on Pd nanocrystals for forming Pd-TiO2 interface toward enhanced CO oxidation[J]. Progress in Natural Science: Materials International, 2016, 26: 289-294. |
[46] | DENG X Q, ZHU B, LI X S, et al. Visible-light photocatalytic oxidation of CO over plasmonic Au/TiO2: unusual features of oxygen plasma activation[J]. Applied Catalysis B: Environmental, 2016, 188: 48-55. |
[47] | LIU Y X, ZHANG J L, SONG L X, et al. Au-HKUST-1 composite nanocapsules: synthesis with a coordination replication strategy and catalysis on CO oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22745-22750. |
[48] | LI H F, PAN C, ZHAO S J, et al. Enhancing performance of PEM fuel cells: using the Au nanoplatelet/nafion interface to enable CO oxidation under ambient conditions[J]. Journal of Catalysis, 2016, 339: 31-37. |
[49] | MORGAN K, COLE K J, GOGUET A, et al. TAP studies of CO oxidation over CuMnOx and Au/CuMnOx catalysts [J]. J. Catal., 2010, 276(1): 38-48. |
[50] | LUO Y, DENG Y, MAO W, et al. Probing the surface structure of α-Mn2O3 Nanocrystals during CO oxidation by operando Raman spectroscopy[J]. The Journal of Physical Chemistry, 2012, 116 (39): 20975-20981 |
[51] | XU R, WANG X, WANG D, et al. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO[J]. J. Catal., 2006, 237(2): 426-430. |
[52] | LE M T, NGUYEN T T, PHAM P T M, et al. Activated MnO2-Co3O4-CeO2 catalysts for the treatment of CO at room temperature[J]. Applied Catalysis A: General, 2014, 480: 34-41. |
[53] | KUNLEKAR R K, SALKER A V. Activity of Pd doped and supported Mn2O3 nanomaterials for CO oxidation[J]. Reac. Kinet. Mech. Cat., 2012, 106: 395-405. |
[54] | LIU Y X, DAI H X, DENG J G, et al. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation[J]. Inorganic Chemistry, 2013, 52 (15): 8665-8676. |
[55] | CARABINEIRO S A C, BASTOS S S T, ÓRFAO J J M, et al. Carbon monoxide oxidation catalysed by exotemplated manganese oxides[J]. Catal. Lett., 2010, 134(3): 21-227. |
[56] | NASKAR M K, ROY M, BASAK S. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: tuning properties for efficient CO oxidation[J]. Phys. Chem. Chem. Phys., 2016, 18: 5253-5263. |
[57] | WANG L C, HUANG S, LIU Q, et al. Gold nanoparticles deposited on manganese (III) oxide as novel efficient catalyst for low temperature CO oxidation[J]. J. Catal., 2008, 259: 66-74. |
[58] | WANG L C, LIU Q, HUANG X S, et al. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation[J]. Appl. Catal. B, 2009, 88: 204-212. |
[59] | LEE Y H, PARK J H, SHIN C H. Physicochemical properties of manganese dioxide synthesized using C2-C5 alcohols as reducing agents and their catalytic activities for CO oxidation[J]. Catalysis Today, 2016, 265: 7-13. |
[60] | PARK J H, KANG D C, PARK S J, et al. CO oxidation over MnO2 catalysts prepared by a simple redox method: influence of the Mn (II) precursors[J]. Journal of Industrial and Engineering Chemistry, 2015, 25: 250-257. |
[61] | ZHANG C, HAN L, LIU W, et al. Facile synthesis of novel MnOx nano-structures and their catalytic performance on CO oxidation[J]. CrystEngComm, 2013, 15: 5150-5155. |
[62] | 叶青, 霍飞飞, 闫立娜, 等.α-MnO2负载纳米Au催化剂低温催化氧化CO和苯的性能[J]. 物理化学学报, 2011, 27 (12): 2872-2880. |
YE Q, HUO F F, YAN L N, et al. Highly active Au/α-MnO2 catalysts for the low-temperature oxidation of carbon monoxide and benzene[J]. Acta Phys.-Chim. Sin., 2011, 27 (12): 2872-2880. | |
[63] | LIANG S H, TENG F, BULGAN G, et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. J. Phys. Chem. C, 2008, 112: 5307-5315. |
[64] | KUNKALEKAR R K, SALKER A V. Low temperature carbon monoxide oxidation over nanosized silver doped manganese dioxide catalysts[J]. Catalysis Communications, 2010, 12: 193-196. |
[65] | CHEN S Y, SONG W Q, LIN H J, et al. Manganese oxide nano-array based monolithic catalysts: tunable morphology and high efficiency for CO oxidation[J]. ACS Appl. Mater. Interfaces, 2016, 8 (12): 7834-7842. |
[66] | WEI Z D, HUANG W Z, ZHANG S T, et al. Carbon-based air electrodes carrying MnO2 in zinc-air batteries[J]. Journal of Power Sources, 2000, 91: 83-85. |
[67] | WEI Z D, HUANG W Z, ZHANG S T, et al. Induced effect of Mn3O4 on formation of MnO2 crystals favourable to catalysis of oxygen reduction[J]. Journal of Applied Electrochemistry, 2000, 30: 1133-1136. |
[68] | LI L, FENG X H, NIE Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catalysis, 2015, 5: 4825-4832. |
[69] | CHENG F Y, ZHANG T R, ZHANG Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew. Chem. Int. Ed., 2013, 52: 2474-2477. |
[70] | WANG J, LIU D F, QI X Q, et al. Insight into the effect of CaMnO3 support on the catalytic performance of platinum catalysts[J]. Chemical Engineering Science, 2015, 135: 179-186. |
[71] | BAI B Y, LI J H, HAO J M. 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol[J]. Appl. Catal. B, 2015, 164: 241-250. |
[72] | LIUY X, DAI H, DENG J G, et al. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3 and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation[J]. Inorganic Chemistry, 2013, 52 (15): 8665-8676. |
[73] | SUN S M, WANG P Y, WU Q, et al. Template-free synthesis of mesoporous MnO2 under ultrasound irradiation for supercapacitor electrode[J]. Mater. Lett., 2014, 137: 206-209. |
[74] | AN C H, WANG Y J, HUANG Y N, et al. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy, 2014, 10: 125-134. |
[75] | WANG C H, HSU H C, HU J H. High-energy asymmetric supercapacitor based on petal-shaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2 V in aqueous neutral electrolyte[J]. J. Power Sources, 2014, 249: 1-8 |
[76] | WANQ Q W, LI Z S, HUANG Y G, et al. A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte[J]. J. Mater. Chem., 2010, 20: 3883-3889. |
[77] | ZHANG C C, GUO C L, WEI Y H, et al. A simple synthesis of hollow Mn2O3 core-shell microspheres and its application in lithium ion batteries[J]. Phys. Chem. Chem. Phys., 2016, 18(6): 4739-4744. |
[78] | ZHAO J Z, TAO Z L, LIANG J, et al. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries[J]. Cryst. Growth Des., 2008, 8(8): 2799-2805. |
[79] | ZHONG K, ZHANG B, LUO S, et al. Investigation on porous MnO microsphere anode for lithium ion batteries[J]. J. Power Sources, 2011, 196(16): 6802-6808. |
[80] | ZHU G, LI H J, DENG L J, et al. Low-temperature synthesis of δ- MnO2 with large surface area and its capacitance[J]. Materials Letters, 2010, 64: 1763-1765. |
[81] | CHEN Z D, GAO L, CAO J Y, et al. Preparation and properties of γ-MnO2 nanotubes as electrode materials of supercapacitor[J]. Acta Chimica Sinica., 2011, 69: 503-507. |
[82] | WANG Y T, LU A H, ZHANG H L, et al. Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors[J]. J. Phys. Chem. C, 2011, 115(13): 5413-5421. |
[83] | LI W Y, SHAO J J, LIU Q, et al. Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors[J]. Electrochimica Acta, 2015, 157: 108-114. |
[84] | GHODBANE O, PASCAL J L, FAVIER F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors[J]. ACS Appl. Mater. Interfaces, 2009, 1(5): 1130-1139. |
[85] | HAN R P, LU Z, ZOU W H, et al. Removal of copper (II) and lead (II) from aqueous solution by manganese oxide coated sand (II): Equilibrium study and competitive adsorption[J]. Journal of Hazardous Materials, 2006, B 137 (1): 480-488. |
[86] | ZHAO W, FENG X H, TAN W F, et al. Relation of lead adsorption on birnessites with different average oxidation states of manganese and release of Mn2+/H+/K+[J]. Journal of Environmental Sciences, 2009, 21(4): 520-526. |
[87] | WANG S G, GONG W X, LIU X W, et al. Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes[J]. Separation and Purification Technology, 2007, 58(1): 17-23. |
[88] | LI X L, PAN G, QIN Y W, et al. EXAFS studies on adsorption- desorption reversibility at manganese oxide-water interfaces(Ⅱ): Reversible adsorption of zinc on δ-MnO2[J]. Journal of Colloid and Interface Science, 2004, 271(1): 35-40. |
[89] | BARLING J, ANBAR A D. Molybdenum isotope fractionation during adsorption by manganese oxides[J]. Earth and Planetary Science Letters, 2004, 217(3): 315-329. |
[90] | WANG J, LIU J, ZHOU Y C, et al. One-pot facile synthesis of hierarchical hollow microspheres constructed with MnO2 nanotubes and their application in lithium storage and water treatment[J]. RSC Advances, 2013, 3(48): 25937-25943. |
[91] | 刘德宏, 谢江坤, 晏乃强. 锰氧化物的零价汞吸附性能初探[J]. 电力科技与环保, 2015, 31(3): 004-008. |
LIU D H, XIE J K, YAN N Q. Discussion on capacities for adsorbing elemental mercury of manganese oxides[J]. Electric Power Environmental Protection, 2015, 31(3): 004-008. | |
[92] | 彭昌军, 姜秀丽, 计红芳,等. 铁锰复合氧化物对3As( Ⅲ )、As(Ⅴ)的吸附性能研究及其在沼液中的应用[J]. 化工学报, 2014, 65(5): 1848-1855. |
PENG C J, JIANG X L, JI H F, et al. Adsorption behavior of Fe-Mn binary oxide towards As (Ⅲ) and As (Ⅴ) and its application in biogas slurry[J]. CIESC Journal, 2014, 65(5): 1848-1855. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[9] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[13] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[14] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[15] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1199
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 718
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||