[1] |
李化治. 制氧技术[M]. 2版. 北京: 冶金工业出版社, 2009.
|
|
LI H Z. Oxygen Technology[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2009.
|
[2] |
FU Q, KANSHA Y, SONG C, et al. A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants[J]. Appl. Energ., 2016, 162: 1114-1121.
|
[3] |
MANENTI F, ROVAGLIO M. Operational planning in the management of programmed maintenances—a MILP approach [C]//Proceedings of the 8th IFAC Symposium on Dynamics and Control of Process Systems, DYCOPS. 2007, 8: 279-284.
|
[4] |
GLANKWAMDEE W, LINDEROTH J, SHEN J, et al. Combining optimization and simulation for strategic and operational industrial gas production and distribution[J]. Comput. Chem. Eng., 2008, 32(11): 2536-2546.
|
[5] |
MITRA S, GROSSMANN I E, PINTO J M, et al. Optimal production planning under time-sensitive electricity prices for continuous power-intensive processes[J]. Comput. Chem. Eng., 2012, 38: 171-184.
|
[6] |
MANENTI F, BOZZANO G, D'ISANTO M, et al. Raising the decision‐making level to improve the enterprise‐wide production flexibility[J]. AIChE J., 2013, 59(5): 1588-1598.
|
[7] |
MANENTI F, ROVAGLIO M. Market-driven operational optimization of industrial gas supply chains[J]. Comput. Chem. Eng., 2013, 56: 128-141.
|
[8] |
MITRA S, PINTO J M, GROSSMANN I E. Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty(Ⅰ): Modelling[J]. Comput. Chem. Eng., 2014, 65: 89-101.
|
[9] |
MITRA S, PINTO J M, GROSSMANN I E. Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty(Ⅱ): Enhanced hybrid bi-level decomposition[J]. Comput. Chem. Eng., 2014, 65: 102-111.
|
[10] |
MARCHETTI P A, GUPTA V, GROSSMANN I E, et al. Simultaneous production and distribution of industrial gas supply-chains[J]. Comput. Chem. Eng., 2014, 69: 39-58.
|
[11] |
ROSSI F, MANENTI F, REKLAITIS G. A general modular framework for the integrated optimal management of an industrial gases supply-chain and its production systems[J]. Comput. Chem. Eng., 2015, 82: 84-104.
|
[12] |
KOPANOS G M, XENOS D P, CICCIOTTI M, et al. Optimization of a network of compressors in parallel: operational and maintenance planning-the air separation plant case[J]. Appl. Energ., 2015, 146: 453-470.
|
[13] |
ZHANG Q, GROSSMANN I E, HEUBERGER C F, et al. Air separation with cryogenic energy storage: optimal scheduling considering electric energy and reserve markets[J]. AIChE J., 2015, 61(5): 1547-1558.
|
[14] |
XENOS D P, NOOR I M, MATLOUBI M, et al. Demand-side management and optimal operation of industrial electricity consumers: an example of an energy-intensive chemical plant[J]. Appl. Energ., 2016, 182: 418-433.
|
[15] |
ZHANG Q, SUNDARAMOORTHY A, GROSSMANN I E, et al. A discrete-time scheduling model for continuous power-intensive process networks with various power contracts[J]. Comput. Chem. Eng., 2016, 84: 382-393.
|
[16] |
PATTISON R C, TOURETZKY C R, JOHANSSON T, et al. Optimal process operations in fast-changing electricity markets: framework for scheduling with low-order dynamic models and an air separation application[J]. Ind. Eng. Chem. Res., 2016, 55 (16): 4562-4584.
|
[17] |
PURANIK Y, KILINC M, SAHINIDIS N V, et al. Global optimization of an industrial gas network operation[J]. AIChE J., 2016, 62 (9): 3216-3224.
|
[18] |
CAO Y, SWARTZ C L E, FLORES-CERRILLO J. Optimal dynamic operation of a high-purity air separation plant under varying market conditions[J]. Ind. Eng. Chem. Res., 2016, 55 (37): 9956-9970.
|
[19] |
刘姿, 汤学忠, 赵立合. 钢铁企业氧气合理利用支持系统的开发研究[J]. 冶金能源, 1998, 17(6): 6-11.
|
|
LIU Z, TANG X Z, ZHAO L H. R&D on oxygen rational utilization system in iron and steel enterprises[J]. Energ. Metall. Ind., 1998, 17(6): 6-11.
|
[20] |
董莉葛, 王立, 汤学忠, 等. 降低氧气放散率的高炉休风模型[J]. 冶金能源, 1999, 18(3): 16-19.
|
|
TONG L G, WANG L, TANG X Z, et al. Model of blast furnace blow down for oxygen releasing rate[J]. Energ. Metall. Ind., 1999, 18(3): 16-19.
|
[21] |
陈光, 陆钟武, 蔡九菊, 等. 钢铁企业氧气系统动态仿真[J]. 东北大学学报 (自然科学版), 2002, 23(10): 940-943.
|
|
CHEN G, LU Z W, CAI J J, et al. Dynamic simulation of oxygen supply system in iron and steel company[J]. J. Northeastern University (Natural Science), 2002, 23(10): 940-943.
|
[22] |
莫友坤. 钢铁企业供氧优化决策支持系统研究[D]. 武汉: 华中科技大学, 2004.
|
|
MO Y K. Research about the decision support system of iron and steel enterprise optimum oxygen supply[D]. Wuhan: Huazhong University of Science & Technology, 2004.
|
[23] |
杨见博. 钢铁企业氧气系统决策分析与优化模型研究[D]. 沈阳: 东北大学, 2012.
|
|
YANG J B. A research on the decision analysis and optimization model of oxygen system of iron and steel enterprises[D]. Shenyang: Northeastern University, 2012.
|
[24] |
陈聪, 赵均, 邵之江. 钢铁企业氧气管网的平衡与调度研究[J]. 计算机与应用化学, 2012, 29(9): 1089-1094.
|
|
CHEN C, ZHAO J, SHAO Z J. Balance of the oxygen pipe network and scheduling in iron and steel enterprises[J]. Comput. Appl. Chem., 2012, 29(9): 1089-1094.
|
[25] |
吴佩林. 钢铁企业氧气预测与优化调度模型研究[D]. 昆明: 昆明理工大学, 2013.
|
|
WU P L. Study on the oxygen prediction and optimization scheduling of iron and steel enterprises[D]. Kunming: Kunming University of Science and Technology, 2013.
|
[26] |
ZHANG P, WANG L, TONG L. MILP-based optimization of oxygen distribution system in integrated steel mills[J]. Comput. Chem. Eng., 2016, 93: 175-184.
|
[27] |
XU Z, ZHAO J, CHEN X, et al. Automatic load change system of cryogenic air separation process[J]. Sep. Purif. Technol., 2011, 81(3): 451-465.
|
[28] |
MANENTI F, MANCA D. Transients modelling for enterprise-wide optimization: generalized framework and industrial case study[J]. Chem. Eng. Res. Des., 2009, 87(8): 1028-1036.
|
[29] |
ZHU Y, LEGG S, LAIRD C D. A multiperiod nonlinear programming approach for operation of air separation plants with variable power pricing[J]. AIChE J., 2011, 57(9): 2421-2430.
|
[30] |
LI Y, WANG X, DING Y. A cryogen-based peak-shaving technology: systematic approach and techno-economic analysis[J]. Int. J. Energ. Res., 2013, 37(6): 547-557.
|