化工学报 ›› 2018, Vol. 69 ›› Issue (1): 1-8.DOI: 10.11949/j.issn.0438-1157.20171495

• 综述与专论 • 上一篇    下一篇

受限界面处流体分子行为的调控及相关分子热力学模型初探:基于高比表面氧化钛的研究进展

陆小华, 蒋管聪, 朱育丹, 冯新, 吕玲红   

  1. 南京工业大学化工学院, 材料化学工程国家重点实验室, 江苏 南京 210009
  • 收稿日期:2017-11-09 修回日期:2017-12-11 出版日期:2018-01-05 发布日期:2018-01-05
  • 通讯作者: 陆小华, 朱育丹
  • 基金资助:

    国家自然科学基金项目(21490584,21676137,21428601);青蓝工程;江苏省自然科学基金面上项目(BK20171464);江苏高校优势学科建设工程项目。

Preliminary study on controlling nanoconfined fluid behavior and modelling molecular thermodynamics: progress in development of high-specific surface area TiO2

LU Xiaohua, JIANG Guancong, ZHU Yudan, FENG Xin, LÜ Linghong   

  1. College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China
  • Received:2017-11-09 Revised:2017-12-11 Online:2018-01-05 Published:2018-01-05
  • Contact: 10.11949/j.issn.0438-1157.20171495
  • Supported by:

    supported by the National Natural Science Foundation of China (21490584, 21676137, 21428601), the Qinglan Project,the Natural Science Foundation of Jiangsu Province (BK20171464) and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

摘要:

纳米受限界面处的流体由于受到界面性质的影响显著,且存在复杂的传递和反应机制耦合问题,其流体分子行为难以调控,成为了现代化工新技术(如膜过程、多相催化)突破的瓶颈。结合了近几年本课题组的相关工作进展,以化学性质稳定的高比表面氧化钛作为研究平台,对界面处流体分子受限行为进行分析,研究了传递和反应机制分别对界面处流体行为的影响,并探索其调控机制;同时对建立的相应分子热力学模型进行了初步探索,通过原子力显微镜技术将界面摩擦性质和分子间相互作用关联,为分子热力学模型提供分子参数。

关键词: 氧化钛, 界面, 纳米受限流体, 热力学模型, 传质, 微尺度

Abstract:

Due to prominent influence of interfacial properties and complicated coupling effect of diffusion and reaction mechanisms, molecular behaviors of nanoconfined fluid at interface are difficult to control which becomes a bottleneck of new technology development (e.g. membrane process, heterogeneous catalysis) in modern chemical industry. Confinement behavior of fluid molecules at interface was studied on chemically stable high-specific surface area titanium oxide on the basis of recent research progress of this group. The effects of diffusion and reaction mechanisms on interfacial fluid behaviors were assessed separately and controlling mechanism was explored. Further, preliminary study on proposed molecular thermodynamic model was performed by atomic force microscopy, which was able to correlate interfacial friction and molecular interaction, and to provide molecular parameters for the thermodynamic model.

Key words: titanium oxide, interface, nanoconfined fluids, thermodynamic model, mass transfer, microscale

中图分类号: