化工学报 ›› 2018, Vol. 69 ›› Issue (6): 2339-2352.DOI: 10.11949/j.issn.0438-1157.20180096
崔希利, 邢华斌
收稿日期:
2018-01-22
修回日期:
2018-03-26
出版日期:
2018-06-05
发布日期:
2018-06-05
通讯作者:
邢华斌
基金资助:
国家自然科学基金项目(21725603,21436010);浙江省自然科学基金项目(LZ18B060001)。
CUI Xili, XING Huabin
Received:
2018-01-22
Revised:
2018-03-26
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Natural Science Foundation of China (21725603, 21436010) and the Natural Science Foundation of Zhejiang Province (LZ18B060001).
摘要:
烯烃、烷烃和炔烃等结构相似物的高效分离是石油化学工业可持续发展的关键过程之一。低碳烃化合物结构和性质相近,仅在碳数和不饱和度存在微小差异,传统低温精馏过程选择性低、能耗高。金属有机框架材料/多孔配位聚合物(MOF/PCP)的结构多样性及可设计性使其可以精确识别相似物分子间的微小差异,在低碳烃分离领域取得重要进展。综述了金属有机框架材料在碳二/碳三的烯烃、炔烃和烷烃分离体系中取得的最新进展以及分离机理,探讨了金属有机框架材料在低碳烃吸附分离研究中存在的问题和发展方向。
中图分类号:
崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352.
CUI Xili, XING Huabin. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352.
[1] | FAHIM M A, AL-SAHHAF T A, ELKILANI A. Fundamentals of Petroleum Refining[M]. UK:Elsevier, 2009. |
[2] | PINES H. The chemistry of catalytic hydrocarbon conversions[M]. New York:Academic Press, 1981.[c1] |
[3] | 王松汉. 乙烯工艺与技术[M]. 北京:中国石化出版社, 2012. WANG S H. Ethylene Technology[M]. Beijing:China Petrochemical Press, 2012. |
[4] | SAVAGE P, BROOKS K. Refinery gases:a quick source of ethylene[J]. Chem[c2] ical Week, 1988, 142(19):16. |
[5] | PORTER K E. Distillation and Absorption[M]. London:CRC Press, 1992. |
[6] | CHEN J, ELDRIDGE R B, ROSEN E L, et al. A study of Cu(I)-ethylene complexation for olefin-paraffin separation[J]. AIChE Journal, 2011, 57:630-644. |
[7] | JIN Y, DATYE A K, RIGHTOR E, et al. The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene[J]. Journal of Catalysis, 2001, 203(2):292-306. |
[8] | MALEK A, FAROOQ S. Hydrogen purification from refinery fuel gas by pressure swing adsorption[J]. AIChE Journal, 1998, 44(9):1985-1992. |
[9] | QI G, FU L, GIANNELIS E P. Sponges with covalently tethered amines for high-efficiency carbon capture[J]. Nature Communications, 2014, 5:5796. |
[10] | KO D. Optimization of vacuum pressure swing adsorption processes to sequester carbon dioxide from coalbed methane[J]. Industrial & Engineering Chemistry Research, 2016, 55(33):8967-8978. |
[11] | GABLE R W, HOSKINS B F, ROBSON R. A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4, 4'-bipyridine)zinc hexafluorosilicate[J]. J. Chem. Soc., Chem. Comm., 1990, (23):1677-1678. |
[12] | YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558):703-706. |
[13] | NORO S, KITAGAWA S, KONDO M, et al. A new, methane adsorbent, porous coordiantion polymer[CuSiF6(4, 4'-bipyridine)2] [J]. Angewandte Chemie International Edition, 2000, 39(12):2082-2084. |
[14] | SUBRAMANIAN S, ZAWOROTKO M J. Porous solids by desing:[CuSiF6(4, 4'-bipyridine)2]n·x DMF, a single framework octahedral coordination polymer with large square channels[J]. Angewandte Chemie International Edition, 1995, 34(19):2127-2129. |
[15] | KITAGAWA S. Porous materials and the age of gas[J]. Angewandte Chemie International Edition, 2015, 54(37):10686-10687. |
[16] | LIN J B, ZHANG J P, CHEN X M. Nonclassical active site for enhanced gas sorpiton in porous coordination polymer[J]. Journal of the American Chemistry Society, 2010, 132(19):6654-6656. |
[17] | 徐东,张军,翟玉春,等. 变压吸附分离工业废气中二氧化碳的研究进展[J].化工进展, 2010, 29(1):150-153. XU D, ZHANG J, ZHAI Y C, et al. Progress in carbon dioxide capture from flue gas by pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2010, 29(1):150-153. |
[18] | 李杰,周理. 变压吸附空分制氧的技术进展[J]. 化学工业与工程, 2004, 21(3):201-219. LI J, ZHOU L. Progress in oxygen separation from air by pressure swing adsorption[J]. Journal of Chemical Industry & Engineering, 2004, 21(3):201-219. |
[19] | NUGENT P, BELMABKHOUT Y, BURD S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495(7439):80-84. |
[20] | HE Y, XIANG S, CHEN B L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature[J]. Journal of the American Chemical Society, 2011, 133(37):14570-14573. |
[21] | MCDONALD T M, MASON J A, KONG X, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks[J]. Nature, 2015, 519(7543):303-308. |
[22] | MASON J A, OKTAWIEC J, TAYLOR M K, et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management[J]. Nature, 2015, 527(7578):357-361. |
[23] | KISHIDA K, WATANABE Y, HORIKE S, et al. DRIFT and theoretical studies of ethylene/ethane separation on flexible and microporous[Cu2(2, 3-pyrazinedicarboxylate)2(pyrazine)]n[J]. Eur. J. Inorg. Chem., 2014, 2747-2752.[c3] |
[24] | FERREIRA A F P, RIBEIRO A M, KULAC S, et al. Methane purification by adsorptive processes on MIL-53(Al)[J]. Chemical Engineering Science, 2015, 124:79-95. |
[25] | MATSUDA R, KITAURA R, KITAGAWA S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J]. Nature, 2005, 436(7048):238-241. |
[26] | XIANG S C, ZHANG Z J, ZHAO C G, et al. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene[J]. Nature Communications, 2011, 2:204. |
[27] | DAS M C, GUO Q S, HE Y B, et al. Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules[J]. Journal of the American Chemical Society, 2012, 134:8703-8710. |
[28] | ZHANG Z J, XIANG S C, CHEN B L. Microporous metal-organic frameworks for acetylene storage and separation[J]. CrystEngComm., 2011, 13(20):5983. |
[29] | HU T L, WANG H L, LI B, et al. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures[J]. Nature Communications, 2015, 6:7328. |
[30] | XIANG S C, ZHOU W, ZHANG Z J, et al. Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature[J]. Angewandte Chemie International Edition, 2010, 49:4615-4618. |
[31] | ZHAO X, YANG Q W, XU D, et al. Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments[J]. AIChE Journal, 2015, 61(6):2016-2027. |
[32] | ZHAO X, XING H B, YANG Q W, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids:a theoretical study[J]. Journal of Physical Chemistry B, 2012, 116(13):3944-3953. |
[33] | BLOCH E D, QUEEN W L, KRISHNA R, et al. Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites[J]. Science, 2012, 335:1606-1610. |
[34] | YANG S, RAMIREZ-CUESTA A J, NEWBY R, et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework[J]. Nature Chemistry, 2014, 7(2):121-129. |
[35] | XING H B, ZHAO X, YANG Q W, et al. Molecular dynamics simulation study on the absorption of ethylene and acetylene in ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(26):9308-9316. |
[36] | 赵旭,邢华斌,李如龙,等. 离子液体在气体分离中的应用[J]. 化学进展, 2011, 23:2258-2268. ZHAO X, XING H B, LI R L, et al. Gas separation based on ionic liquids[J]. Progress in Chemistry, 2011, 23:2258-2268. |
[37] | XING H B, ZHAO X, LI R L, et al. Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2013, 1:1357-1363. |
[38] | CUI X L, CHEN K J, XING H B, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353:141-144. |
[39] | MAAIKE C K, LOURDES F V. Selective paraffin removal from ethylene/ethane mixtures by adsorption on small-pored titanosilicate molecular sieves[J]. Chemical Engineering Science, 2010, 65:807-811. |
[40] | JOEL P, PALPH T Y. New sorbents for olefin/paraffins separations by adsorption via π-complexation:synthesis and effects of substrates[J]. Chemical Engineering Science, 2000, 55:2607-2616. |
[41] | AGUADO S, BERGERET G, DANIEL C, et al. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A[J]. Journal of the American Chemical Society, 2012, 134:14635-14637. |
[42] | WANG Q M, SHEN D M, BÜLOW M, et al. Metallo-organic molecular sieve for gas separation and purification[J]. Microporous and Mesoporous Materials, 2002, 55:217-230. |
[43] | BAO Z B, ALNEMRAT S, YU L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-orgnic framework[J]. Langmuir, 2011, 27 (22):13554-13562. |
[44] | CHANG G G, HUANG M H, SU Y, et al. Immobilization of Ag(Ⅰ) into a metal-orgnaic framework with -SO3H sites for highly selective olefin/paraffin separations at room temperature[J]. Chemical Communications, 2015, 51:2859-2862. |
[45] | ZHANG Y M, LI B Y, KRISHNA R, et al. Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation[J]. Chemical Communications, 2015, 51:2714-2727. |
[46] | BÖHME U, BARTH B, PAULA C, et al. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents COP-27 and ZIF-8[J]. Langmuir, 2013, 29:8592-8600. |
[47] | KWON H T, JEONG H K, LEE A S, et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances[J]. Journal of the American Chemical Society, 2015, 137 (38):12304-12311. |
[48] | LIU D F, MA X L, XI H X, et al. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes[J]. J. Membr. Sci., 2014, 451:85-93.[c4] |
[49] | ZHANG K, LIVELY R P, ZHANG C, et al. Exploring the framework hydropholicity and flexibility of ZIF-8:from biofuel recovery to hydrocarbon separations[J]. The Journal of Physical Chemistry Letters, 2013, 4:3618-3622. |
[50] | GÜCÜYENER C, BERGH J V D, GASCON J, et al. Ethane/ethane separation turned on its head:selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism[J]. Journal of the American Chemical Society, 2010, 132:17704-17706. |
[51] | WANG X J, WU Y, ZHOU X, et al. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene[J]. Chemical Engineering Science, 2016, 155:338-347. |
[52] | LIANG W W, ZHANAG Y F, WANG W J, et al. Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene[J]. Chemical Engineering Science, 2017, 162:192-202. |
[53] | LIANG W W, XU F, ZHOU X, et al. Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene[J]. Chemical Engineering Science, 2016, 148:275-281. |
[54] | CHEN Y W, QIAO Z W, WU H X, et al. An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene[J]. Chemical Engineering Science, 2018, 175:110-117. |
[55] | LIAO P Q, ZHANG W X, ZHANG J P, et al. Efficient purification of ethane by an ethane-trapping metal-organic framework[J]. Nature Communications, 2015, 6:8697. |
[56] | KIM K C, LEE C Y, FAIREN-JIMENEZ D, et al. Computational study of propylene and propane binding in metal-organic frameworks containing highly exposed Cu+ or Ag+ cations[J]. The Journal of Physical Chemistry C, 2014, 118:9086-9092. |
[57] | BAE Y S, LEE C Y, KIM K C, et al. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites[J]. Angewandte Chemie International Edition, 2012, 51(8):1857-1860. |
[58] | YOON J W, SEO Y K, HWANG Y K, et al. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption[J]. Angewandte Chemie International Edition, 2010, 49(34):5949-5952. |
[59] | TANAKA K, TAGUCHI A, HAO J, et al. Permeation and separation properties of polyimide membranes to olefins and paraffins[J]. Journal of Membrane Science, 1996, 121:197-207. |
[60] | UCHIDA S, KAWAMOTO R, TAGAMI H, et al. Highly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ion[J]. Journal of the American Chemical Society, 2008, 130:12370-12376. |
[61] | GEIER S J, MASON J A, BLOCH E D, et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M¼Mg, Mn, Fe, Co, Ni, Zn)[J]. Chemical Science, 2013, 4:2054-2061. |
[62] | WUTTKE S, BAZIN P, VIMONT A, et al. Discovering the active sites for C3 separation in MIL-100(Fe) by using operando IR spectroscopy[J]. Chemistry A European Journal, 2012, 18:11959-11967. |
[63] | LI K H, OLSON D H, SEIDEL J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Journal of the American Chemical Society, 2009, 131:10368-10369. |
[64] | LEE C Y, BAE Y S, JEONG N C, et al. Kinetic separation of propene and propane in metal-organic frameworks:controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios[J]. Journal of the American Chemical Society, 2011, 133(4):5228-5231. |
[65] | CADIAU A, ADIL K, BHATT P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353:137-140. |
[66] | ADIL K, BELMABKHOUT Y, PILLAI R S, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks:insight into the structure/separation relationship[J]. Chemical Society Reviews, 2017, 46:3402-3430. |
[67] | YANG L F, CUI X L, YANG Q W, et al. Single-molecule propyne trap:highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials[J]. Advanced Materials, 2017, 30:1705374. |
[68] | 邢华斌,崔希利,杨立峰,等,一种吸附分离丙烯丙炔的方法:PCT/CN2017/083730[P]. 2016-05-17. XING H B, CUI X L, YANG L F, et al. Methods for propylene/propyne separation:PCT/CN2017/083730[P].2016-05-17. |
[69] | LI L, LIN R B, KRISHNA R, et al. Flexible-robust metal-organic framework for efficient removal of propyne from propylene[J]. Journal of the American Chemical Society, 2017, 139:7733-7736. |
[70] | LIN R B, XIANG S C, XING H B, et al. Exploration of porous metal-organic frameworks for gas separation and purification[J]. Coordination Chemistry Reviews, 2017, DOI:10.1016/j.ccr.2017. 09.027. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[6] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[7] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 456
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 845
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||