化工学报 ›› 2018, Vol. 69 ›› Issue (7): 3038-3049.DOI: 10.11949/j.issn.0438-1157.20171589
任笑石1,2,3, 贾悦1,3, 吕晓龙1,3, 马诗琪1,2,3, 史腾华1,2,3, 陈华艳1,3
收稿日期:
2017-11-30
修回日期:
2018-03-15
出版日期:
2018-07-05
发布日期:
2018-07-05
通讯作者:
贾悦
基金资助:
国家自然科学基金项目(21306135);天津市自然科学基金项目(13JCQNJC08800,17JCYBJC17400)。
REN Xiaoshi1,2,3, JIA Yue1,3, LÜ Xiaolong1,3, MA Shiqi1,2,3, SHI Tenghua1,2,3, CHEN Huayan1,3
Received:
2017-11-30
Revised:
2018-03-15
Online:
2018-07-05
Published:
2018-07-05
Supported by:
supported by the National Natural Science Foundation of China (21306135) and the Natural Science Foundation of Tianjin, China (13JCQNJC08800, 17JCYBJC17400)
摘要:
利用交联反应在PVDF超滤膜表面创新性的构建含有萃取剂磷酸二异辛酯的聚二甲基硅氧烷-正硅酸乙酯体系萃取凝胶膜(EGM);并对其基本物理化学性质进行了表征。研究了EGM过程中料液相循环方式、料液相及反萃相浓度与流量、水相温度、组件装填密度等工艺条件对镍离子传质性能及EGM运行稳定性的影响规律。9 h实验结果表明在室温水相温度为22℃条件下,当工艺运行条件为料液相流量1900 ml·min-1、反萃相流量93 ml·min-1、组件装填密度14%、料液相循环于壳程时,EGM对镍离子的萃取性能及稳定性达到最佳值。在此基础上,对该系统进行了60 h稳定性实验,并与传统支撑液膜进行了对比。结果显示传统支撑液膜持续运行35 h后通量降为0,衰减率为100%;而EGM持续运行60 h后通量衰减率仅为27.1%;同时EGM初始传质通量相比于传统支撑液膜提高了6.8倍,体现了EGM过程在传质通量大幅提升和长期运行稳定性显著增进方面具有双重优势。
中图分类号:
任笑石, 贾悦, 吕晓龙, 马诗琪, 史腾华, 陈华艳. 萃取凝胶膜过程工艺条件对镍离子传质效率及稳定性增进[J]. 化工学报, 2018, 69(7): 3038-3049.
REN Xiaoshi, JIA Yue, LÜ Xiaolong, MA Shiqi, SHI Tenghua, CHEN Huayan. Enhancing mass transfer efficiency and stability of nickel ion by extraction gel membrane process conditions[J]. CIESC Journal, 2018, 69(7): 3038-3049.
[1] | 王俊九, 褚立强, 范广宇. 支撑液膜分离技术[J]. 水处理技术, 2001, 27(4):187-191. WANG J J, CHU L Q, FAN G Y. Supported liquid membrane separation technology[J]. Technology Water Treatment, 2001, 27(4):187-191. |
[2] | POLIWODA A, ILCZUK N, WIECZOREK P P, et al. Transport mechanism of peptides through supported liquid membranes[J]. Separation & Purification Technology, 2007, 57(3):444-449. |
[3] | SWAIN B, MISHRA C, JEONG J, et al. Separation of Co(Ⅱ) and Li(Ⅰ) with Cyanex 272 using hollow fiber supported liquid membrane:a comparison with flat sheet supported liquid membrane and dispersive solvent extraction process[J]. Chemical Engineering Journal, 2015, 271:61-70. |
[4] | MANNA M S, SAHA P, GHOSHAL A K. Separation of medicinal catechins from tea leaves (Camellia sinensis) extract using hollow fiber supported liquid membrane (HF-SLM) module[J]. Journal of Membrane Science, 2014, 471:219-226. |
[5] | BHATLURI K K, MANNA M S, SAHA P, et al. Supported liquid membrane-based simultaneous separation of cadmium and lead from wastewater[J]. Journal of Membrane Science, 2014, 459:256-263. |
[6] | NEPLENBROEK A M, BARGEMAN D, SMOLDERS C A, et al. Supported liquid membranes:instability effects[J]. Journal of Membrane Science, 1992, 67(2/3):121-1t32. |
[7] | PABBY A K, SASTRE A M. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes[J]. Journal of Membrane Science, 2013, 430:263-303. |
[8] | 郑辉东. 支撑液膜传质及其不稳定性研究[D]. 杭州:浙江大学, 2010. ZHENG H D. Study on mass transfer and instability of supported liquid membrane[D]. Hangzhou:Zhejiang University, 2010. |
[9] | XU J, LU S G, FU D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis[J]. Journal of Hazardous Materials, 2009, 165(1/2/3):832-837. |
[10] | HO S V, SHERIDAN P W, KRUPETSKY E, et al. Supported polymeric liquid membranes for removing organics from aqueous solutions(Ⅰ):Transport characteristics of polyglycol liquid membranes[J]. Journal of Membrane Science, 1996, 112(1):13-27. |
[11] | DANESI P R, REICHLEY-YINGER L, RICKERT P G. Lifetime of supported liquid membranes:the influence of interfacial properties, chemical composition and water transport on the long term stability of the membranes[J]. Journal of Membrane Science, 1987, 31(2):117-145. |
[12] | LOZANO L J, GODINEZ C, RÍOS A P D L, et al. Recent advances in supported ionic liquid membrane technology[J]. Journal of Membrane Science, 2011, 376(1):1-14. |
[13] | 沈江南, 阮慧敏, 吴东柱, 等. 离子液体支撑液膜的研究及应用进展[J]. 化工进展, 2009, 28(12):2092-2098. SHEN J N, RUAN H M, WU D Z, et al. Study and application progress of ionic liquid supported liquid membrane[J]. Chemical Industry and Engineering Progress, 2009, 28(12):2092-2098. |
[14] | IZAK P, RUTH W, FEI Z, et al. Selective removal of acetone and butan-1-ol from water with supported ionic liquidpolydimethylsiloxane membrane by pervaporation[J]. Chemical Engineering Journal, 2008, 139(2):318-321. |
[15] | YANG X J, FANE A G, BI J, et al. Stabilization of supported liquid membranes by plasma polymerization surface coating[J]. Journal of Membrane Science, 2000, 168(1):29-37. |
[16] | KEMPERMAN A J B, ROLEVINK H H M, BARGEMAN D, et al. Stabilization of supported liquid membranes by interfacial polymerization top layers[J]. Journal of Membrane Science, 1998, 138(1):43-55. |
[17] | CHIARIZIA R, HORWITZ E P, RICKERT P G, et al. Application of supported liquid membranes for removal of uranium from groundwater[J]. Separation Science, 1989, 25(13):1571-1586. |
[18] | 王彩玲, 张立志. 支撑液膜稳定性研究进展[J]. 化工进展, 2007, 26(7):949-956. WANG C L, ZHANG L Z. Research progress of the stability of supported liquid membrane[J]. Chemical Industry and Engineering Progress, 2007, 26(7):949-956. |
[19] | MOLINARI R, DEBARTOLO L, DRIOLI E. Coupled transport of amino-acids through a supported liquid membrane(1):Experimental optimization[J]. Journal of Membrane Science, 1992, 73(2):203-215. |
[20] | VASUDEVAN T, DAS S, DEBNATH A K, et al. Facilitated transport of europium(Ⅲ) ions across fixed-site membrane[J]. Journal of Membrane Science, 2009, 342(1):113-120. |
[21] | SCINDIA Y M, PANDEY A K, REDDY A V R, et al. Coupleddiffusion transport of Cr(Ⅵ) across anion-exchange membranes prepared by physical and chemical immobilization methods[J]. Journal of Membrane Science, 2005, 249(1):143-152. |
[22] | 高士强, 贾悦, 吕晓龙, 等. 界面聚合中单体结构对复合支撑液膜稳定性的影响[J]. 功能材料, 2016, 47(9):9007-9011. GAO S Q, JIA Y, LÜ X L, et al. The influences of the monomer structure from interfacial polymerization method on the composite SLM stability[J]. Journal of Functional Materials, 2016, 47(9):9007-9011 |
[23] | 杨运云. 固相微萃取膜的研制及其在分析样品预处理中的应用[D]. 广州:中山大学, 2004. YANG Y Y. Preparation of solid-phase microextraction membrane and its application in sample pre-treatment[D]. Guangzhou:Sun Yat-sen University, 2004. |
[24] | KOCHERGINSKY N M, YANG Q, SEELAM L, et al. Recent advances in supported liquid membrane technology[J]. Separation & Purification Technology, 2007, 53(2):171-177. |
[25] | SOLANGI I B, ÖZCAN F, ARSLAN G, et al. Transportation of Cr(Ⅵ) through calix |
[4] | arene based supported liquid membrane[J]. Separation & Purification Technology, 2013, 118(6):470-478. |
[26] | ATA O N, ÇOLAK S. Modelling of zinc transport through a supported liquid membrane[J]. Hydrometallurgy, 2005, 80(3):155-162. |
[27] | ALGUACILl F J, NAVARRO P. Permeation of cadmium through a supported liquid membrane impregnated with CYANEX 923[J]. Hydrometallurgy, 2001, 61(2):137-142. |
[28] | GYVES J D, MIGUEL E R D S. Metal ion separations by supported liquid membranes[J]. Industrial Engineering Chemistry Research, 1999, 38(6):2182-2202. |
[29] | LIU D Y, LIU G P, MENG L, et al. Hollow fiber modules with ceramicsupported PDMS composite membranes for pervaporation recovery of biobutanol[J]. Separation & Purification Technology, 2015, 146:24-32. |
[30] | MUNRO T A, SMITH B D. Facilitated transport of amino acids by fixed-site jumping[J]. Chemical Communications, 1997, 22(22):2167-2168. |
[31] | YAHAYA G O, BRISDON B J, ENGLAND R, et al. Analysis of carrier-mediated transport through supported liquid membranes using functionalized polyorganosiloxanes as integrated mobile/fixed-site carrier systems[J]. Journal of Membrane Science, 2000, 172(1):253-268.sheet supported liquid membrane and dispersive solvent extraction process[J]. Chemical Engineering Journal, 2015, 271:61-70. |
[4] | MANNA M S, SAHA P, GHOSHAL A K. Separation of medicinal catechins from tea leaves (Camellia sinensis) extract using hollow fiber supported liquid membrane (HF-SLM) module[J]. Journal of Membrane Science, 2014, 471:219-226. |
[5] | BHATLURI K K, MANNA M S, SAHA P, et al. Supported liquid membrane-based simultaneous separation of cadmium and lead from wastewater[J]. Journal of Membrane Science, 2014, 459:256-263. |
[6] | NEPLENBROEK A M, BARGEMAN D, SMOLDERS C A, et al. Supported liquid membranes:instability effects[J]. Journal of Membrane Science, 1992, 67(2/3):121-132. |
[7] | PABBY A K, SASTRE A M. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes[J]. Journal of Membrane Science, 2013, 430:263-303. |
[8] | 郑辉东. 支撑液膜传质及其不稳定性研究[D]. 浙江:浙江大学, 2010. ZHENG H D. Study on mass transfer and instability of supported liquid membrane[D]. Zhejiang:Zhejiang University, 2010. |
[9] | XU J, LU S G, FU D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis[J]. Journal of Hazardous Materials, 2009, 165(1/2/3):832-837. |
[10] | HO S V, SHERIDAN P W, KRUPETSKY E, et al. Supported polymeric liquid membranes for removing organics from aqueous solutions I. Transport characteristics of polyglycol liquid membranes[J]. Journal of Membrane Science, 1996, 112(1):13-27. |
[11] | DANESI P R, REICHLEY-YINGER L, RICKERT P G. Lifetime of supported liquid membranes:The influence of interfacial properties, chemical composition and water transport on the long term stability of the membranes[J]. Journal of Membrane Science, 1987, 31(2):117-145. |
[12] | LOZANO L J, GODINEZ C, RÍOS A P D L, et al. Recent advances in supported ionic liquid membrane technology[J]. Journal of Membrane Science, 2011, 376(1):1-14. |
[13] | 沈江南, 阮慧敏, 吴东柱, 等. 离子液体支撑液膜的研究及应用进展[J]. 化工进展, 2009, 28(12):2092-2098. SHEN J N, RUAN H M, WU D Z, et al. Study and application progress of ionic liquid supported liquid membrane[J]. Chemical Industry and Engineering Progress, 2009, 28(12):2092-2098. |
[14] | IZAK P, RUTH W, FEI Z, et al. Selective removal of acetone and butan-1-ol from water with supported ionic liquid-polydimethylsiloxane membrane by pervaporation[J]. Chemical Engineering Journal, 2008, 139(2):318-321. |
[15] | YANG X J, FANE A G, BI J, et al. Stabilization of supported liquid membranes by plasma polymerization surface coating[J]. Journal of Membrane Science, 2000, 168(1):29-37. |
[16] | KEMPERMAN A J B, ROLEVINK H H M, BARGEMAN D, et al. Stabilization of supported liquid membranes by interfacial polymerization top layers[J]. Journal of Membrane Science, 1998, 138(1):43-55. |
[17] | CHIARIZIA R, HORWITZ E P, RICKERT P G, et al. Application of supported liquid membranes for removal of uranium from groundwater[J]. Separation Science, 1989, 25(13):1571-1586. |
[18] | 王彩玲, 张立志. 支撑液膜稳定性研究进展[J]. 化工进展, 2007, 26(7):949-956. WANG C L, ZHANG L Z. Research progress of the stability of supported liquid membrane[J]. Chemical Industry and Engineering Progress, 2007, 26(7):949-956. |
[19] | MOLINARI R, DEBARTOLO L, DRIOLI E. Coupled transport of amino-acids through a supported liquid membrane. 1. Experimental optimization[J]. Journal of Membrane Science, 1992, 73(2):203-215. |
[20] | VASUDEVAN T, DAS S, DEBNATH A K, et al. Facilitated transport of europium(Ⅲ) ions across fixed-site membrane[J]. Journal of Membrane Science, 2009, 342(1):113-120. |
[21] | SCINDIA Y M, PANDEY A K, REDDY A V R, et al. Coupled-diffusion transport of Cr(VI) across anion-exchange membranes prepared by physical and chemical immobilization methods[J]. Journal of Membrane Science, 2005, 249(1):143-152. |
[22] | 高士强, 贾悦, 吕晓龙, 等. 界面聚合中单体结构对复合支撑液膜稳定性的影响[J]. 功能材料, 2016, 47(9):9007-9011. GAO S Q, JIA Y, LU X L, et al. The influences of the monomer structure from interfacial polymerization method on the composite SLM stability[J]. Journal of Functional Materials, 2016, 47(9):9007-9011 |
[23] | 杨运云. 固相微萃取膜的研制及其在分析样品预处理中的应用[D]. 广东:中山大学, 2004. YANG Y Y. Preparation of solid-phase microextraction membrane and its application in sample pre-treatment[D]. Guangdong:Sun Yat-sen University, 2004. |
[24] | KOCHERGINSKY N M, YANG Q, SEELAM L, et al. Recent advances in supported liquid membrane technology[J]. Separation & Purification Technology, 2007, 53(2):171-177. |
[25] | SOLANGI I B, ÖZCAN F, ARSLAN G, et al. Transportation of Cr(VI) through calix |
[4] | arene based supported liquid membrane[J]. Separation & Purification Technology, 2013, 118(6):470-478. |
[26] | ATA O N, ÇOLAK S. Modelling of zinc transport through a supported liquid membrane[J]. Hydrometallurgy, 2005, 80(3):155-162. |
[27] | ALGUACILl F J, NAVARRO P. Permeation of cadmium through a supported liquid membrane impregnated with CYANEX 923[J]. Hydrometallurgy, 2001, 61(2):137-142. |
[28] | GYVES J D, MIGUEL E R D S. Metal ion separations by supported liquid membranes[J]. Industrial Engineering Chemistry Research, 1999, 38(6):2182-2202. |
[29] | LIU D Y, LIU G P, MENG L, et al. Hollow fiber modules with ceramic-supported PDMS composite membranes for pervaporation recovery of biobutanol[J]. Separation & Purification Technology, 2015, 146:24-32. |
[30] | MUNRO T A, SMITH B D. Facilitated transport of amino acids by fixed-site jumping[J]. Chemical Communications, 1997, 22(22):2167-2168. |
[31] | YAHAYA G O, BRISDON B J, ENGLAND R, et al. Analysis of carrier-mediated transport through supported liquid membranes using functionalized polyorganosiloxanes as integrated mobile/fixed-site carrier systems[J]. Journal of Membrane Science, 2000, 172(1):253-268. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[6] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[13] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[14] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[15] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 362
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||