[1] |
XIE X X, FEI Z Y, ZOU C, et al. Effects of rare-earth additives on structures and performances of CuO-CeO2-SiO2 catalysts for recycling Cl2 from HCl Oxidation[J]. Acta Physico-Chimica Sinica, 2015, 31(6):1153-1161.
|
[2] |
MORTENSEN M, MINET R G, TSOTSIS T T, et al. A two-stage cyclic fluidized bed process for converting hydrogen chloride to chlorine[J]. Chemical Engineering Science, 1996, 51(10):2031-2039.
|
[3] |
TANG J H, CHEN X, FEI Z Y, et al. HCl oxidation to recycle Cl2 over a Cu/Ce composite oxide catalyst(Part 1):Intrinsic kinetic study[J]. Industrial & Engineering Chemistry Research, 2013, 52(34):11897-11903.
|
[4] |
DEACON H. Improvement in the manufacture of chlorine:US141333[P]. 1873-07-18.
|
[5] |
CHEN X, XU X H, FEI Z Y, et al. CeO2 nanodots embedded in a porous silica matrix as an active yet durable catalyst for HCl oxidation[J]. Catalysis Science & Technology, 2016, 6(13):5116-5123.
|
[6] |
WOLF A, MLECZKO L, SCHLUTER S, et al. Processes and apparatus for the production of chlorine by gas phase oxidation:US20090304573[P]. 2009-12-10.
|
[7] |
WALSDORFF C, FIENE M, ADAMI C, et al. Fixed-bed method for production of chlorine by catalytic gas-phase oxidation of hydrogen chloride:EP1542923[P]. 2005-12-28.
|
[8] |
PEREZ-RAMIREZ J, MONDELLI C, SCHMIDT T, et al. Sustainable chlorine recycling via catalysed HCl oxidation:from fundamentals to implementation[J]. Energy & Environmental Science, 2011, 4(12):4786-4799.
|
[9] |
TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews-Science and Engineering, 1996, 38(4):439-520.
|
[10] |
CAO H Y, WANG J L, YAN S H, et al. Effect of doping M (M=Mn, Y) into Ce0.50Zr0.50O2 on the properties of MnOx/Ce0.50-zZr0.50-zM2zOy/Al2O3 for catalytic combustion of ethyl acetate[J]. Acta Physico-Chimica Sinica, 2012, 28(8):1936-1942.
|
[11] |
HAMMES M, VALTCHEV M, ROTH M B, et al. A search for alternative Deacon catalysts[J]. Applied Catalysis B:Environmental, 2013, 132/133(1):389-400.
|
[12] |
FARRA R, GARCIA-MELCHOR M, EICHELBAUM M, et al. Promoted ceria:a structural, catalytic, and computational study[J]. ACS Catalysis, 2015, 3(10):2256-2268.
|
[13] |
谢兴星, 费兆阳, 戴勇, 等. 铈基复合氧化物的结构及其对HCl催化氧化性能的影响[J]. 分子催化, 2014, 28(6):507-514. XIE X X, FEI Z Y, DAI Y, et al. Structure of ceria-based mixed oxides and its influence on HCl catalytic oxidation performance[J]. Journal of Molecular Catalysis(China), 2014, 28(6):507-514.
|
[14] |
MOSER M, VILE G, COLUSSI S, et al. Structure and reactivity of ceria-zirconia catalysts for bromine and chlorine production via the oxidation of hydrogen halides[J]. Journal of Catalysis, 2015, 331:128-137.
|
[15] |
徐希化, 楼家伟, 谢兴星, 等. 非晶态ZrO2镶嵌的超细CeO2催化HCl氧化[J]. 无机化学学报, 2017, 33(3):421-428. XU X H, LOU J W, XIE X X, et al. Superfine CeO2 embedded in a porous ZrO2 matrix for catalytic HCl oxidation[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(3):421-428.
|
[16] |
徐希化, 费兆阳, 陈献, 等. 气凝胶骨架镶嵌的CeO2纳米团簇催化氧化HCl制Cl2[J]. 化工学报, 2015, 66(9):3421-3427. XU X H, FEI Z Y, CHEN X, et al. CeO2 nanoclusters stabilized in aerogel matrix as catalysts for Cl2 production from HCl oxidation[J]. CIESC Journal, 2015, 66(9):3421-3427.
|
[17] |
AMRUTE A P, MONDELLI C, MOSER M, et al. Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2[J]. Journal of Catalysis, 2012, 286:287-297.
|
[18] |
FEI Z Y, XIE X X, DAI Y, et al. HCl oxidation for sustainable Cl2 recycle over the CexZr1-xO2 catalysts:effects of Ce/Zr ratio on the activity and stability[J]. Industrial & Engineering Chemistry Research, 2014, 53(50):19438-19445.
|
[19] |
LI C, SUN Y, DJERDJ I, et al. Shape-controlled CeO2 nanoparticles:stability and activity in the catalyzed HCl oxidation reaction[J]. ACS Catalysis, 2017, 7(10):6453-6463.
|
[20] |
ATRIBAK I, AZAMBRE B, BUENO LOPEZ A, et al. Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot[J]. Applied Catalysis B:Environmental, 2009, 92(1/2):126-137.
|
[21] |
ZHANG Y W, WEN J, WANG J, et al. Synthesis of monodisperse CexZr1-xO2 nanocrystals and the size-dependent enhancement of their properties[J]. Nano Research, 2011, 4(5):494-504.
|
[22] |
YUAN Q, DUAN H H, LI L L, et al. Controlled synthesis and assembly of ceria-based nanomaterials[J]. Journal of Colloid and Interface Science, 2009, 335(2):151-167.
|
[23] |
THAMMACHART M, MEEVOO V, RIRKSOMBOON T, et al. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique:CO oxidation[J]. Catalysis Today, 2001, 68(1/2/3):53-61.
|
[24] |
WU Z, LI M, OVERBURY S H. A Raman spectroscopic study of the speciation of vanadia supported on ceria nanocrystals with defined surface planes[J]. ChemCatChem, 2012, 4(10):1653-1661.
|
[25] |
TROVARELLI A, ZAMAR F, LLORCA J, et al. Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling-analysis of low-temperature redox activity and oxygen storage capacity[J]. Journal of Inorganic Chemistry, 1997, 169(2):490-502.
|
[26] |
FORNASIERO P, BALDUCCI G, DIMONTE R, et al. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2[J]. Journal of Catalysis, 1996, 164(1):173-183.
|
[27] |
ZHU H, RAZZAQ R, LI C, et al. Catalytic methanation of carbon dioxide by active oxygen material CexZr1-xO2 supported NiCo bimetallic nanocatalysts[J]. AIChE Journal, 2013, 59(7):2567-2576.
|
[28] |
MONTE R D, KASPAR J. Heterogeneous environmental catalysis-a gentle art:CeO2-ZrO2 mixed oxides as a case history[J]. Catalysis Today, 2005, 100(1/2):27-35.
|
[29] |
WU X, FAN J, RAN R, et al. Effect of preparation method on the surface and redox properties of Ce0.67Zr0.33O2 mixed oxides[J]. Journal of Alloys and Compounds, 2005, 395(1/2):135-140.
|
[30] |
YESTE M P, HERNANDEZ J C, BERNAL S, et al. Redox behavior of thermally aged ceria-zirconia mixed oxides. Role of their surface and bulk structural properties[J]. Chemistry of Materials, 2006, 18(11):2750-2757.
|