化工学报 ›› 2019, Vol. 70 ›› Issue (3): 901-912.DOI: 10.11949/j.issn.0438-1157.20180804
收稿日期:
2018-07-16
修回日期:
2018-12-20
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
吴晅
作者简介:
吴晅(1976—),男,博士,教授,<email>wxgif@163.com</email>
基金资助:
Xuan WU(),Xiaorui LI,Jun MA,Mengzhu QIN,Yahui ZHOU,Haiguang LI
Received:
2018-07-16
Revised:
2018-12-20
Online:
2019-03-05
Published:
2019-03-05
Contact:
Xuan WU
摘要:
对三种管口浸没方式下气泡生成行为过程进行可视化实验和三维数值模拟。对比分析了管口浸没方式、管口直径、气体流量等因素对气泡生成形态、气泡脱离直径、气泡膨胀脱离时间以及气液流场速度的影响。实验与数值模拟取得较为一致的结果。研究发现,气泡生成过程可分为单气泡生成和双气泡生成聚并两种模式,两者之间存在明显的气泡脱离形态转折点;三种管口浸没方式下,气泡脱离直径均随着管径和气体流量的增大而增大;气泡膨胀脱离时间随管径的增大而增加,而随气体流量的增加先急剧下降然后趋于平缓;在底吹和侧吹方式下,气泡长短轴比C值分别在0.75和1.1附近波动,其最终脱离形式均接近于球形;而顶吹方式下,C值在1.5附近波动,气泡脱离形态为椭球形。
中图分类号:
吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
Xuan WU, Xiaorui LI, Jun MA, Mengzhu QIN, Yahui ZHOU, Haiguang LI. Behavior characteristics of bubble formation under various nozzle immersion modes[J]. CIESC Journal, 2019, 70(3): 901-912.
Pipe number | Outer diameter, Do/mm | Inner diameter, Di/mm | |
---|---|---|---|
1 | 2.4 | 2 | |
2 | 2.85 | 2.4 | |
3 | 3.75 | 3 | |
4 | 7 | 6 | |
5 | 9 | 8 |
表1 不锈钢管尺寸
Table 1 Size of stainless steel flat pipe
Pipe number | Outer diameter, Do/mm | Inner diameter, Di/mm | |
---|---|---|---|
1 | 2.4 | 2 | |
2 | 2.85 | 2.4 | |
3 | 3.75 | 3 | |
4 | 7 | 6 | |
5 | 9 | 8 |
Liquid density/ (kg/m3) | Gas density/ (kg/m3) | Liquid viscosity/ (Pa·s) | Gas viscosity/ (Pa·s) | Surface tension/ (N/m) | Gravity acceleration/ (m/s2) |
---|---|---|---|---|---|
998 | 1.225 | 0.89×10-3 | 1.79×10-5 | 0.072 | 9.81 |
表2 气液两相的物性参数
Table 2 Physical parameters of gas-liquid two-phase
Liquid density/ (kg/m3) | Gas density/ (kg/m3) | Liquid viscosity/ (Pa·s) | Gas viscosity/ (Pa·s) | Surface tension/ (N/m) | Gravity acceleration/ (m/s2) |
---|---|---|---|---|---|
998 | 1.225 | 0.89×10-3 | 1.79×10-5 | 0.072 | 9.81 |
1 | 赵宁, 王配配, 郭素娜, 等. 垂直管气液两相环状流的界面扰动波速度[J]. 化工学报, 2018, 69(7): 2926-2934. |
ZhaoN, WangP P, GuoS N, et al. Interfacial disturbance wave velocity of gas-liquid two-phase annular flow in vertical pipe[J]. CIESC Journal, 2018, 69(7): 2926-2934. | |
2 | 张文伟, 柯鹏, 杨春信, 等. 气液两相流界面多尺度问题可计算性研究进展[J]. 化工学报, 2014, 65(12): 4645-4652. |
ZhangW W, KeP, YangC X, et al. Progress of computability of multi-scale interface problems in gas-liquid two-phase flow[J]. CIESC Journal, 2014, 65(12): 4645-4652. | |
3 | 张军, 陈听宽, 闻建龙, 等. 垂直同心环形管内上升气液两相环状流含气率与压降预测[J]. 化工学报, 2003, 54(1): 47-51. |
ZhangJ, ChenT K, WenJ L, et al. Prediction of void fraction and pressure drop for upward gas-liquid two-phase flow through vertical concentric annulus[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 47-51. | |
4 | AliyuM A, BabaY D, LaoL Y, et al. Interfacial friction in upward annular gas-liquid two-phase flow in pipes[J]. Experimental Thermal and Fluid Science, 2017, 84: 90-109. |
5 | YaoC, LiH X, XueY Q, et al. Investigation on the frictional pressure drop of gas liquid two-phase flows in vertical downward tubes[J]. International Communications in Heat and Mass Transfer, 2018, 91: 138-149. |
6 | ChaoC, XuX, KwelleS O, et al. Significance of gas-liquid interfaces for two-phase flows in micro-channels[J]. Chemical Engineering Science, 2018, 192: 114-125. |
7 | 张清凤, 陈晓平. 喷射鼓泡塔海水脱硫特性[J]. 化工学报, 2016, 67(4): 1572-1579. |
ZhangQ F, ChenX P. Desulphurization properties of seawater with jet bubbling reactor[J]. CIESC Journal, 2016, 67(4): 1572-1579. | |
8 | ZiegenheinT, LucasD. Observations on bubble shapes in bubble columns under different flow conditions[J]. Experimental Thermal and Fluid Science, 2017, 85: 248-256. |
9 | HuberM, DobeschD, KunzP, et al. Influence of orifice type and wetting properties on bubble formation at bubble column reactors[J]. Chemical Engineering Science, 2016, 152: 151-162. |
10 | LiX N, LiuM Y, MaY L, et al. Experiments and meso-scale modeling of phase holdups and bubble behavior in gas-liquid-solid mini-fluidized beds[J]. Chemical Engineering Science, 2018, 192: 725-738. |
11 | KhodabandehlouR, AskaripourH, DehkordiA M. Numerical investigation of gas bubble behavior in tapered fluidized beds[J]. Particuology, 2018, 38: 152-164. |
12 | LiY J, LiuM Y, LiX N. Single bubble behavior in gas-liquid-solid mini-fluidized beds[J]. Chemical Engineering Journal, 2016, 286: 497-507. |
13 | 陶中兰,邢世录,李春丽,等. SMBR内气液两相流三维CFD 模拟[J]. 环境工程学报, 2014, 8(6): 2251-2256. |
TaoZ L, XingS L, LiC L, et al. Three-dimensional CFD simulation of gas-liquid two-phase flow in SMBR [J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2251-2256. | |
14 | ZhuX, XieJ, LiaoQ, et al. Dynamic bubbling behaviors on a micro-orifice submerged in stagnant liquid[J]. International Journal of Heat & Mass Transfer, 2014, 68(1): 324-331. |
15 | 胡俊, 李婷婷, 于勇,等. 环形与圆形喷管水下气泡生成的实验对比研究[J]. 北京理工大学学报, 2017, 37(8): 771-777. |
HuJ, LiT T, YuY, et al. Experimental investigation of submerged bubble evolution on annular and circular nozzles[J]. Transactions of Beijing Institute of Technology, 2017, 37(8): 771-777. | |
16 | 宋庆唐, 金家琪, 吴桂英, 等. 二维鼓泡床内气泡尺寸分布的实验与CFD模拟[J]. 化工学报, 2008, 59(2): 335-340. |
SongQ T, JinJ Q, WuG Y, et al. Experiment and CFD simulation of bubble size distribution in 2D gas-liquid bubble column[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(2): 335-340. | |
17 | 张健, 于勇, 胡俊. 低气流量时水下微米级针管气泡生成实验研究[J]. 工程热物理学报, 2018, 39(3): 561-566. |
ZhangJ, YuY, HuJ. Experimental study of bubble formation from a submerged micron nozzle[J]. Journal of Engineering Thermophysics, 2018, 39(3): 561-566. | |
18 | AlbadawiA, DonoghueD B, RobinsonA J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53(1): 11-28. |
19 | LiowJ. Quasi-equilibrium bubble formation during top-submerged gas injection[J]. Chemical Engineering Science, 2000, 55(20): 4515-4524. |
20 | TripathiM K, SahuK C, KarapetsasG, et al. Bubble rise dynamics in a viscoplastic material[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 222: 217-226. |
21 | DietrichN, MayoufiN, PoncinS, et al. Bubble formation at an orifice: a multiscale investigation[J]. Chemical Engineering Science, 2013, 92(14): 118-125. |
22 | 闫红杰, 赵国建, 刘柳,等. 静止水中单气泡形状及上升规律的实验研究[J]. 中南大学学报(自然科学版), 2016, 47(7): 2513-2520. |
YanH J, ZhaoG J, LiuL, et al. Experimental study on shape and rising behavior of single bubble in stagnant water[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2513-2520. | |
23 | AbbassiW, BesbesS, ElhajemM, et al. Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF)[J]. Computers and Fluids, 2018, 15: 47-59. |
24 | 陈思旭, 李隆键, 胡安杰,等. 气泡运动的格子Boltzmann方法数值模拟[J]. 核动力工程, 2016, (4): 148-153. |
ChenS X, LiL J, HuA J, et al. Simulation of bubble movement with lattice Boltzmann method[J]. Nuclear Power Engineering, 2016, (4): 148-153. | |
25 | 蒋炎坤, 褚开星. 基于VOF方法发动机水下排气气泡特性研究[J]. 华中科技大学学报(自然科学版), 2015, 43(10): 10-14. |
JiangY K, ChuK X. Research of characteristic of exhaust bubbles underwater using VOF method on engines[J]. J. Huazhong Univ. Sci.&Tech.(Natural Science Edition), 2015, 43(10): 10-14. | |
26 | YangX G, RobertJ O, RobertF M, et al. Gas distribution of a downward micro-nozzle assisted fluidized bed of fine powder[J]. Chemical Engineering Journal, 2015, 264: 945-953. |
27 | 龚晓波, 顾兆林, 林高平, 等. 水煤浆气化炉激冷流程中气液两相负浮力流动的数值模拟[J].化工学报, 2003, 54(7): 930-935. |
GongX B, GuZ L, LinG P, et al. Numerical simulation of gas-liquid two-phase flow with reverse buoyancy in quench chamber of coal gasifier and its application[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(7): 930-935. | |
28 | TsugeH, TezukaY, MitsudaniM, et al. Bubble formation mechanism from downward nozzle — effect of nozzle shape and operating parameters[J]. Chemical Engineering Science, 2006, 61(10): 3290-3298. |
29 | SubratD, YosS, GeoffreyB, et al. Principal characteristics of a bubble formation on a horizontal downward facing surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411: 94-104. |
30 | MaJ, ZhouP, ChengW, et al. Dimensional analysis and experimental study of gas penetration depth model for submerged sid-blown equipment[J]. Experimental Thermal and Fluid Science, 2016, 75: 220-227. |
31 | 吴晅, 焦晶晶, 梁盼龙, 等. 顶部浸没竖直向下平口管口气泡膨胀脱离特性[J]. 化工学报, 2016, 67(5): 1868-1877. |
WuX, JiaoJ J, LiangP L, et al. Expansion and detachment characteristics of bubble at downward nozzle of vertical flat pipe[J]. CIESC Journal, 2016, 67(5): 1868-1877. | |
32 | BrackbillJ U, KotheD B, ZemachC. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||