化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1188-1197.DOI: 10.11949/j.issn.0438-1157.20180895
收稿日期:
2018-08-03
修回日期:
2018-11-10
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
邹得球
作者简介:
<named-content content-type="corresp-name">刘小诗</named-content>(1992—),男,硕士研究生,<email>1563940515@qq.com</email>|邹得球(1981—),男,博士,副教授,<email>zoudeqiu@nbu.edu.cn</email>
基金资助:
Xiaoshi LIU(),Deqiu ZOU(),Ruijun HE,Xianfeng MA
Received:
2018-08-03
Revised:
2018-11-10
Online:
2019-03-05
Published:
2019-03-05
Contact:
Deqiu ZOU
摘要:
为提高石蜡相变乳液的传热性能,通过添加氧化石墨烯(GO),制备了GO/石蜡复合相变乳液并对其相关性能进行了表征。搭建了流动阻力、对流换热试验台,对比研究了石蜡相变乳液及GO/石蜡复合相变乳液的流动阻力特性和对流换热特性,试验结果表明,由于GO的亲水性,复合相变乳液都表现出较好的稳定性。当GO的质量分数为0.01%、0.02%、0.03%时,复合相变乳液的热导率分别增加了20.01%、30.50%、35.18%。添加GO使乳液的流动阻力略有增加,直管段最大增加了6.70%,90°弯管处最大增加了13.20%;对流传热系数随着GO浓度的增加而增大,当GO浓度为0.03%时,对流传热系数最大提高了43.90%。
中图分类号:
刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions[J]. CIESC Journal, 2019, 70(3): 1188-1197.
Parameter | Uncertainty/% |
---|---|
L | ±0.29 |
D | ±0.1 |
qm | ±0.2 |
ΔP | ±1.1 |
Re | ±0.9 |
h | ±1.7 |
表1 试验误差
Table 1 Experimental uncertainties
Parameter | Uncertainty/% |
---|---|
L | ±0.29 |
D | ±0.1 |
qm | ±0.2 |
ΔP | ±1.1 |
Re | ±0.9 |
h | ±1.7 |
Test sample | Thermal conductivity/(W/(m·K)) |
---|---|
water | 0.599 |
PCE | 0.359 |
0.01%(mass)GO | 0.431 |
0.02%(mass)GO | 0.469 |
0.03%(mass)GO | 0.485 |
表2 不同质量分数GO/石蜡相变乳液的热导率
Table 2 Thermal conductivity of GO/paraffin PCE with different mass fractions
Test sample | Thermal conductivity/(W/(m·K)) |
---|---|
water | 0.599 |
PCE | 0.359 |
0.01%(mass)GO | 0.431 |
0.02%(mass)GO | 0.469 |
0.03%(mass)GO | 0.485 |
1 | 黄莉.石蜡/水相变乳液的制备与性能[J]. 化工学报, 2018, 69(4): 1749-1757. |
HuangL.Preparation and properties of paraffin/water phase change emulsion[J]. CIESC Journal, 2018, 69(4): 1749-1757. | |
2 | 刘东, 何蔚然, 钟小龙, 等.潜热型功能热流体在微小管道内的换热特性[J]. 化工进展, 2016, 35(10): 3042-3048. |
LiuD, HeW R, ZhongX L, et al.The heat transfer characteristics of latent functionally thermal fluid in micro tube[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3042-3048. | |
3 | ZouD, FengZ, XiaoR, et al.Preparation and flow characteristic of a novel phase change fluid for latent heat transfer[J]. Solar Energy Materials & Solar Cells, 2010, 94(12): 2292-2297. |
4 | KumaresanV, ChandrasekaranP, NandaM, et al.Role of PCM based nanofluids for energy efficient cool thermal storage system[J]. International Journal of Refrigeration, 2013, 36(6): 1641-1647. |
5 | LiuJ, XuC, ChenL L, et al.Preparation and photo-thermal conversion performance of modified graphene/ionic liquid nanofluids with excellent dispersion stability[J]. Solar Energy Materials & Solar Cells, 2017, 170: 219-232. |
6 | GhorbaniH R.Preparation of copper nanofluids using an appropriate technique[J]. Oriental Journal of Chemistry, 2014, 30(4): 2025-2028. |
7 | LiD, HongB, FangW, et al.Preparation of well-dispersed silver nanoparticles for oil-based nanofluids[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1697-1702. |
8 | LiuM S, LinC C, TsaiC Y, et al.Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. International Journal of Heat & Mass Transfer, 2006, 49(17): 3028-3033. |
9 | MadheshD, KalaiselvamS.Experimental study on the heat transfer and flow properties of Ag-ethylene glycol nanofluid as a coolant[J]. Heat & Mass Transfer, 2014, 50(11): 1597-1607. |
10 | DasS K, PutraN, ThiesenP, et al.Temperature dependence of thermal conductivity enhancement for nanofluids[J]. Journal of Heat Transfer, 2003, 125(4): 567. |
11 | 常强.碳纳米管纳米流体传热特性实验研究[D]. 青岛: 青岛科技大学, 2015. |
ChangQ.Experimental study on the thermal conductivity of carbon nanotubes nanofluids[J]. Qingdao: Qingdao University of Science and Technology, 2015. | |
12 | 向军,李菊香.纳米悬浮液的有效导热系数[J]. 低温与超导, 2009, 37(1): 59-62. |
XiangJ, LiJ X.Effective thermal conductiv ity of nanoparticles suspension[J]. Cryo. & Supercond, 2009, 37(1): 59-62. | |
13 | MorimotoT, TogashiK, KumanoH, et al.Thermophysical properties of phase change emulsions prepared by D-phase emulsification[J]. Energy Conversion & Management, 2016, 122: 215-222. |
14 | ZhangX, WuJ Y, NiuJ.PCM-in-water emulsion for solar thermal applications: the effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics[J]. Solar Energy Materials & Solar Cells, 2016, 147: 211-224. |
15 | HoC J, GaoJ Y.Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material [J]. International Communications in Heat & Mass Transfer, 2009, 36(5): 467-470. |
16 | ZhengY F, QiuZ Z, ChenJ.The investigation of phase change emulsion (PCE): fabrication, thermal conductivity and utilization of nanoparticles[J]. Advanced Materials Research, 2014, 860-863: 862-866. |
17 | 邹得球, 肖睿, 何世辉, 等.基于纳米粒子/相变石蜡乳状液的研究[J]. 材料导报, 2009, 23(15): 103-107. |
ZouD Q, XiaoR, HeS H, et al.Research based on nanoparticles/ phase change wax emulsion[J]. Materials Review, 2009, 23(15): 103-107. | |
18 | 杨志涛, 张军强, 宗冬冬, 等.SiO2改性石墨烯–石蜡复合相变乳液的制备及热性能[J]. 新能源进展, 2017, 5(2): 110-116. |
YangZ T, ZhangJ Q, ZongD D, et al.Preparation and thermal properties of SiO2 modified graphene-paraffin composite phase change emulsions[J]. Advances in New and Renewable Energy, 2017, 5(2): 110-116. | |
19 | 毛凌波, 梁志彬, 林敬堂, 等.纳米材料增强石蜡相变乳状液在太阳能中的应用[J]. 太阳能学报, 2016, 37(1): 142-146. |
MaoL B, LiangZ B, LinJ T, et al.Nanomaterials enhanced phase change wax emulisions used in the solar energy[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 142-146. | |
20 | WangF, ZhangC, LiuJ, et al.Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage[J]. Applied Energy, 2017, 188: 97-106. |
21 | WangF, LiuJ, FangX, et al.Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance[J]. Solar Energy Materials & Solar Cells, 2016, 147: 101-107. |
22 | YuW, XieH, BaoD.Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets[J]. Nanotechnology, 2010, 21(5): 055705. |
23 | GuptaS S, SivaV M, KrishnanS, et al.Thermal conductivity enhancement of nanofluids containing graphene nanosheets[J]. Journal of Applied Physics, 2011, 110(8): 902. |
24 | YuW, XieH, ChenW.Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets[J]. Journal of Applied Physics, 2010, 107(9): 666. |
25 | KausarA.Enhanced electrical and thermal conductivity of modified poly(acrylonitrile-co-butadiene)-based nanofluid containing functional carbon black-graphene oxide[J]. Fullerene Science & Technology, 2016, 24(4): 278-285. |
26 | RanjbarzadehR, KarimipourA, AfrandM, et al.Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe[J]. Applied Thermal Engineering, 2017, 126: 538-547. |
27 | ÖzerinçS, KakaçS, YaziciogluA G.Enhanced thermal conductivity of nanofluids: a state-of-the-art review[J]. Microfluidics & Nanofluidics, 2010, 8(2): 145-170. |
28 | KibriaM A, AnisurM R, MahfuzM H, et al.A review on thermophysical properties of nanoparticle dispersed phase change materials[J]. Energy Conversion & Management, 2015, 95: 69-89. |
29 | 刘彦丰, 高正阳, 梁秀俊.传热学[M]. 北京:中国电力出版社, 2015: 54. |
LiuY F, GaoZ Y, LiangX J, et al.Heat Transfer[M]. Beijing: China Electric Power Press, 2015: 54. | |
30 | MoffatR J.Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17. |
31 | MaZ W, ZhangP, WangR Z, et al.Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes[J]. International Journal of Heat & Mass Transfer, 2010, 53(19): 3745-3757. |
32 | MaZ W, ZhangP.Pressure drops and loss coefficients of a phase change material slurry in pipe fittings[J]. International Journal of Refrigeration, 2012, 35(4): 992-1002. |
33 | 张飞龙, 王莉, 俞树荣, 等.氧化石墨烯及其导热纳米流体的制备与性能[J]. 功能材料, 2015, 46(16): 16138-16141. |
ZhangL F, WangL, YuS R, et al.Preparation and properties of graphene oxide and its thermally conductive nanofluid[J].Journal of Functional Materials, 2015, 46(16): 16138-16141. | |
34 | FotukianS M, EsfahanyM N.Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube[J]. International Communications in Heat & Mass Transfer, 2010, 37(2): 214-219. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[9] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||