化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 186-192.DOI: 10.11949/j.issn.0438-1157.20181217
王红斌1(),彭佳杰2,孙海权1,潘权稳2(),王如竹2,王海亮1,徐兆宏1
收稿日期:
2018-10-17
修回日期:
2019-01-23
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
潘权稳
作者简介:
<named-content content-type="corresp-name">王红斌</named-content>(1961—),男,教授级高级工程师, <email>408201618@qq.com</email>|潘权稳(1987—),男,博士,助理研究员,<email>sailote@sjtu.edu.cn</email>
Hongbin WANG1(),Jiajie PENG2,Haiquan SUN1,Quanwen PAN2(),Ruzhu WANG2,Hailiang WANG1,Zhaohong XU1
Received:
2018-10-17
Revised:
2019-01-23
Online:
2019-03-31
Published:
2019-03-31
Contact:
Quanwen PAN
摘要:
吸附式冷风机组无须冷水回路和冷水泵,可满足小型化的应用需求。针对一种由2个吸附床,1个冷凝器和1个热管型的蒸发器的硅胶-水吸附式冷风机进行了实验研究,确定了机组的动态运行特性,探讨了热源温度、冷却水进口温度和冷风出口温度对系统性能的影响。实验结果表明,机组能够有效利用60~90℃范围内的低温热源,可提供0.84~2.29 kW的制冷量,系统的COP在0.26~0.43之间。
中图分类号:
王红斌, 彭佳杰, 孙海权, 潘权稳, 王如竹, 王海亮, 徐兆宏. 硅胶-水吸附式冷风机组的设计及性能实验[J]. 化工学报, 2019, 70(S1): 186-192.
Hongbin WANG, Jiajie PENG, Haiquan SUN, Quanwen PAN, Ruzhu WANG, Hailiang WANG, Zhaohong XU. Design and experimental study on silica gel-water adsorption air cooler[J]. CIESC Journal, 2019, 70(S1): 186-192.
参数 | 数值 |
---|---|
翅片长度/mm | 254 |
翅片宽度/mm | 56 |
翅片厚度/mm | 0.15 |
翅片间距/mm | 3 |
翅片段管长/mm | 300 |
换热管外径/mm | Φ9.54 |
换热管厚度/mm | 0.4 |
换热管间距/mm 水平 垂直 | 25(中心距) 22(中心距) |
硅胶颗粒直径/mm | 0.5~1.5 |
硅胶质量/kg | 2.8 |
表1 吸附床的尺寸参数
Table 1 Dimension parameters of adsorption bed
参数 | 数值 |
---|---|
翅片长度/mm | 254 |
翅片宽度/mm | 56 |
翅片厚度/mm | 0.15 |
翅片间距/mm | 3 |
翅片段管长/mm | 300 |
换热管外径/mm | Φ9.54 |
换热管厚度/mm | 0.4 |
换热管间距/mm 水平 垂直 | 25(中心距) 22(中心距) |
硅胶颗粒直径/mm | 0.5~1.5 |
硅胶质量/kg | 2.8 |
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 1054 |
流程数 | 10 |
换热管厚度/mm | 0.7 |
换热管数量 | 20 |
表2 冷凝器的设计参数
Table 2 Design parameters of condenser
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 1054 |
流程数 | 10 |
换热管厚度/mm | 0.7 |
换热管数量 | 20 |
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 800 |
微槽深度/mm | 28 |
流程数 | 4 |
换热管厚度/mm | 0.7 |
微槽宽度/mm | 300 |
换热管数量 | 44 |
表3 蒸发器的设计参数
Table 3 Design parameters of evaporator
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 800 |
微槽深度/mm | 28 |
流程数 | 4 |
换热管厚度/mm | 0.7 |
微槽宽度/mm | 300 |
换热管数量 | 44 |
工作过程 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 |
---|---|---|---|---|---|---|---|---|
制冷过程1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
预热预冷过程1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
制冷过程2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
预热预冷过程2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
表4 硅胶-水吸附式冷风机的运行控制
Table 4 Operational control of silica gel-water adsorption air cooler
工作过程 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 |
---|---|---|---|---|---|---|---|---|
制冷过程1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
预热预冷过程1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
制冷过程2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
预热预冷过程2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
名称 | 规格 | 精度 |
---|---|---|
温度传感器 | A级Pt100 | 0.15℃ |
电磁流量计 | ZK-LDE-25-PO-4 | 0.5% |
电磁流量计 | ICF300F | -15%~10% |
温湿度记录仪 | TH22R-EX | 温度精度±0.1℃, 湿度精度 ±1.5%RH |
热线式风速仪 | AR866 | ±3%±0.1dgt |
表5 测量设备和参数
Table 5 Measuring equipment and parameters
名称 | 规格 | 精度 |
---|---|---|
温度传感器 | A级Pt100 | 0.15℃ |
电磁流量计 | ZK-LDE-25-PO-4 | 0.5% |
电磁流量计 | ICF300F | -15%~10% |
温湿度记录仪 | TH22R-EX | 温度精度±0.1℃, 湿度精度 ±1.5%RH |
热线式风速仪 | AR866 | ±3%±0.1dgt |
参数 | 制冷量 | COP |
---|---|---|
相对误差范围 | 5.29%~6.89% | 8.99%~13.09% |
表6 实验结果的相对误差
Table 6 Relative errors of experimental results
参数 | 制冷量 | COP |
---|---|---|
相对误差范围 | 5.29%~6.89% | 8.99%~13.09% |
1 | PanQ W, WangR Z. Study on operation strategy of a silica gel-water adsorption chiller in solar cooling application[J]. Solar Energy, 2018, 172: 24-31. |
2 | 孟晓伟, 武卫东, 朱成剑.用于吸附单元管的烧结沸石吸附剂的性能强化实验[J].制冷技术, 2014, 34(2): 20-25. |
MengX W, WuW D, ZhuC J. Experiment on performance strengthening of sintered zeolite adsorbent for adsorption unit tube[J]. Chinese Journal of Refrigeration Technology, 2014, 34(2): 20-25. | |
3 | LuZ S, WangR Z. Performance improvement by mass-heat recovery of an innovative adsorption air-conditioner driven by 50-80℃ hot water[J]. Applied Thermal Engineering, 2013, 55(1/2): 113-120. |
4 | WangD, ZhangJ, TianX, et al. Progress in silica gel-water adsorption refrigeration technology[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 85-104. |
5 | GBU-Model Type NAK-Adsorptions Chiller [DB/OL]. 2018.https: //. |
6 | Silica Gel Chillers eCoo [DB/OL]. 2018 .http: //fahrenheit cool/en/products/chillers/ecoo/. |
7 | SahaB B, AkisawaA, KashiwagiT. Solar/waste heat driven two-stage adsorption cooler: the prototype[J]. Renewable Energy, 2001, 23(1): 93-101. |
8 | SahaB B, KoyamaS, Choon NgK, et al. Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller[J]. Renewable Energy, 2006, 31(13): 2076-2090. |
9 | ChangW S, WangC C, ShiehC C. Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller[J]. Applied Thermal Engineering, 2009, 29(10): 2100-5. |
10 | MagnettoD, de BoerR, VastaS. TOPMACS: thermally operated mobile air conditioning systems[C]//Vehicle Thermal Management Systems Conference and Exhibition (VTMS10). Woodhead Publishing, 2011: 635-647. |
11 | WangD C, WuJ Y, XiaZ Z, et al. Study of a novel silica gel–water adsorption chiller (Ⅱ): Experimental study[J]. International Journal of Refrigeration, 2005, 28(7): 1084-1091. |
12 | ChenC J, WangR Z, XiaZ Z, et al. Study on a compact silica gel-water adsorption chiller without vacuum valves: design and experimental study[J]. Applied Energy, 2010, 87(8): 2673-2681. |
13 | LuZ S, WangR Z, XiaZ Z, et al. Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol[J]. Energy Conversion and Management, 2013, 65: 430-437. |
14 | PanQ W, WangR Z, WangL W, et al. Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers[J]. International Journal of Refrigeration, 2016, 67: 336-44. |
15 | KhalilA, El-AgouzE A, El-SamadonyY A F, et al. Experimental study of silica gel/water adsorption cooling system using a modified adsorption bed[J]. Science and Technology for the Built Environment, 2016, 22(1): 41-49. |
16 | RamyH M, OsamaM, MohamedL E, et al. Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers[J]. Applied Thermal Engineering, 2018, 137: 368-376. |
17 | RamyH M, OsamaM, MohamedL E, et al. Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications[J]. International Journal of Refrigeration, 2018, 86: 40-47. |
18 | SouravM, KyawT, BidyutB S, et al. Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system[J]. Applied Energy, 2017, 206: 507-518. |
19 | SapienzaA, GullìG, CalabreseL, et al. An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers[J]. Applied Energy, 2016, 179: 929-938. |
20 | SapienzaA, PalombaV, GullìG, et al. A new management strategy based on the reallocation of ads-/desorption times: experimental operation of a full-scale 3 beds adsorption chiller[J]. Applied Energy, 2017, 205: 1081-1090. |
21 | PauloJ V, JoséJ S, HerbertM, et al. Experimental chiller with silica gel: adsorption kinetics analysis and performance evaluation[J]. Energy Conversion and Management, 2017, 132: 172-179. |
22 | ChenQ F, DuS W, YuanZ X, et al. Experimental study on performance change with time of solar adsorption refrigeration system[J]. Applied Thermal Engineering, 2018, 138: 386-393. |
23 | FatihB, BenyoucefK, MiloudT. Experimental investigation of a solar adsorption refrigeration system working with silica gel/water pair: a case study for Bou-Ismail solar data[J]. Solar Energy, 2016, 131: 165-175. |
24 | GhilenN, GabsiS, MessaiS, et al. Performance of silica gel-water solar adsorption cooling system[J]. Case Studies in Thermal Engineering, 2016, 8: 337-345. |
25 | SouravM, PramodK, KandadaiS, et al. Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system[J]. International Journal of Refrigeration, 2016, 67: 174-189. |
26 | BidyutB S, ShigeruK, KimC N, et al. Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller[J]. Renewable Energy, 2005, 31(13): 2076-2090. |
27 | YangG Z, XiaZ Z, WangR Z, et al. Research on a compact adsorption room air conditioner[J]. Energy Conversion and Management, 2006, 47(15/16): 2167-2177. |
28 | 潘权稳. 采用模块化吸附床的硅胶-水吸附式系统制冷性能研究及优化[D]. 上海: 上海交通大学, 2015. |
PanQ W. Performance study and optimization of silica gel-water adsorption refrigeration system using modular adsorber[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
29 | 中华人民共和国国家质量监督检疫总局, 中国国家标准化管理委员会. 房间空气调节器: GB/T 7725—2004[S]. 北京: 中国标准出版社, 2004. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Room air conditioners: GB/T 7725—2004[S]. Beijing: Standards Press of China, 2004. | |
30 | 国家质量监督检验检疫总局, 卫生部, 国家环境保护总局. 室内空气质量: GB/T 18883—2002[S]. 北京: 中国标准出版社, 2002. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Ministry of Health of the People’s Republic of China, Ministry of Environmental Protection of the People’s Republic of China. Indoor air quality standard: GB/T 18883—2002[S]. Beijing: Standards Press of China, 2002. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[7] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[11] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[14] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||