化工学报 ›› 2020, Vol. 71 ›› Issue (3): 945-954.DOI: 10.11949/0438-1157.20191008
收稿日期:
2019-09-09
修回日期:
2019-10-14
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
王华生
基金资助:
Yu PAN,Huasheng WANG(),Hongfeng ZHAN,Huanhuan SUN
Received:
2019-09-09
Revised:
2019-10-14
Online:
2020-03-05
Published:
2020-03-05
Contact:
Huasheng WANG
摘要:
蓝藻水华产生并释放的微囊藻毒素(microcystins, MCs)在自然环境中高度稳定,难以被传统水处理技术有效去除,对饮用水安全及生态系统构成严重威胁。通过微生物代谢作用,可实现MCs的高效原位酶促降解。目前,已从天然水体及其沉积物中表征部分具有高效降解MCs能力的细菌,且在酶促途径中鉴别出负责催化起始反应的关键水解酶MlrA(即microcystinase)。本文在阐明MlrA进化关系的基础上,就该酶的活性特征、分子结构与催化机理进行了综述,并对MlrA的研究方向进行了展望,以期为水环境的生物修复提供参考。
中图分类号:
潘禹, 王华生, 詹鸿峰, 孙缓缓. 微囊藻毒素降解酶MlrA的生物学特征及催化机理研究进展[J]. 化工学报, 2020, 71(3): 945-954.
Yu PAN, Huasheng WANG, Hongfeng ZHAN, Huanhuan SUN. Progress of biological characterization and mechanism of enzymatic degradation of microcystinase[J]. CIESC Journal, 2020, 71(3): 945-954.
1 | Rastogi R P,Sinha R P,Incharoensakdi A.The cyanotoxin-microcystins: current overview[J].Reviews in Environmental Science and Bio/Technology,2014,13(2):215-249. |
2 | Yaw M I,Fei Y,Zhen D,et al.Exposure routes and health effects of microcystins on animals and humans: a mini-review[J].Toxicon,2018,151:156-162. |
3 | Fontanillo M,Köhn M.Microcystins: synthesis and structure-activity relationship studies toward PP1 and PP2A[J].Bioorganic and Medicinal Chemistry,2018,26(6):1118-1126. |
4 | Douglas P,Moorhead G B G,Ye R,et al.Protein phosphatases regulate DNA-dependent protein kinase activity[J].Journal of Biological Chemistry,2001,276(22):18992-18998. |
5 | Ding W X,Ong C N.Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity[J].FEMS Microbiology Letters,2003,220(1):1-7. |
6 | La-Salete R,Oliveira M M,Palmeira C A,et al.Mitochondria a key role in microcystin-LR kidney intoxication[J].Journal of Applied Toxicology,2008,28(1):55-62. |
7 | Ho L,Sawade E,Newcombe G.Biological treatment options for cyanobacteria metabolite removal—a review[J].Water Research,2012,46(5):1536-1548. |
8 | 闫海,张超,魏巍,等.微囊藻毒素生物降解的研究进展[J].环境工程学报,2007,1(10):8-12. |
Yan H,Zhang C,Wei W,et al.Advances in the biodegradation of microcystins[J].Chinese Journal of Environmental Engineering,2007,1(10):8-12. | |
9 | Li J M,Li R H,Li J.Current research scenario for microcystins biodegradation — a review on fundamental knowledge, application prospects and challenges[J].Science of the Total Environment,2017,595:615-632. |
10 | Dziga D,Wasylewski M,Wladyka B,et al.Microbial degradation of microcystins[J].Chemical Research in Toxicology,2013,26(6):841-852. |
11 | Harada K,Imanishi S,Kato H,et al.Isolation of Adda from microcystin-LR by microbial degradation[J].Toxicon,2004,44(1):107-109. |
12 | Jones G J,Bourne D G,Blakeley R L,et al.Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria[J].Natural Toxins,1994,2(4):228-235. |
13 | Bourne D G,Jones G J,Blakeley R L,et al.Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR[J].Applied and Environmental Microbiology,1996,62(11):4086-4094. |
14 | Bourne D G,Riddles P,Jones G J,et al.Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR[J].Environmental Toxicology,2001,16(6):523-534. |
15 | Zhu X,Shen Y,Chen X,et al.Biodegradation mechanism of microcystin-LR by a novel isolate ofRhizobium sp. TH and the evolutionary origin of themlrA gene[J].International Biodeterioration and Biodegradation,2016,115:17-25. |
16 | Saito T,Okano K,Park H D,et al.Detection and sequencing of the microcystin LR-degrading gene,mlrA, from new bacteria isolated from Japanese lakes[J].FEMS Microbiology Letters,2003,229(2):271-276. |
17 | Imanishi S,Kato H,Mizuno M,et al.Bacterial degradation of microcystins and nodularin[J].Chemical Research in Toxicology,2005,18(3):591-598. |
18 | Okano K,Shimizu K,Kawauchi Y,et al.Characteristics of a microcystin-degrading bacterium under alkaline environmental conditions[J].Journal of Toxicology,2009,2009:954291. |
19 | Park H D,Sasaki Y,Maruyama T,et al.Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake[J].Environmental Toxicology,2001,16(4):337-343. |
20 | Jiang Y,Shao J,Wu X,et al.Active and silent members in themlr gene cluster of a microcystin-degrading bacterium isolated from Lake Taihu, China[J].FEMS Microbiology Letters,2011,322(2):108-114. |
21 | Yan H,Wang H,Wang J,et al.Cloning and expression of the first gene for biodegrading microcystin LR bySphingopyxis sp. USTB-05[J].Journal of Environmental Sciences,2012,24(10):1816-1822. |
22 | Qin L,Zhang X,Chen X,et al.Isolation of a novel microcystin-degrading bacterium and the evolutionary origin ofmlr gene cluster[J].Toxins,2019,11(5):269-281. |
23 | Yang F,Zhou Y,Sun R,et al.Biodegradation of microcystin-LR and -RR by a novel microcystin-degrading bacterium isolated from Lake Taihu[J].Biodegradation,2014,25(3):447-457. |
24 | Chen J,Hu L B,Zhou W,et al.Degradation of microcystin-LR and RR by aStenotrophomonas sp. strain EMS isolated from Lake Taihu, China[J].International Journal of Molecular Sciences,2010,11(3):896-911. |
25 | Wang M,Casey P J.Protein prenylation: unique fats make their mark on biology[J].Nature Reviews Molecular Cell Biology,2016,17(2):110-122. |
26 | Ahearn I M,Haigis K,Bar-Sagi D,et al.Regulating the regulator: post-translational modification of RAS[J].Nature Reviews Molecular Cell Biology,2012,13(1):39-51. |
27 | Pei J,Mitchell D A,Dixon J E,et al.Expansion of type II CAAX proteases reveals evolutionary origin of γ-secretase subunit APH-1[J].Journal of Molecular Biology,2011,410(1):18-26. |
28 | Dziga D,Wladyka B,Zielińska G,et al.Heterologous expression and characterisation of microcystinase[J].Toxicon,2012,59(5):578-586. |
29 | Dziga D,Lisznianska M,Wladyka B.Bioreactor study employing bacteria with enhanced activity toward cyanobacterial toxins microcystins[J].Toxins,2014,6(8):2379-2392. |
30 | Dexter J,Dziga D,Lv J,et al.Heterologous expression ofmlrA in a photoautotrophic host–engineering cyanobacteria to degrade microcystins[J].Environmental Pollution,2018,237:926-935. |
31 | Zilliges Y,Kehr J C,Mikkat S,et al.An extracellular glycoprotein is implicated in cell-cell contacts in the toxic cyanobacteriumMicrocystis aeruginosa PCC 7806[J].Journal of Bacteriology,2008,190(8):2871-2879. |
32 | Shimizu K,Maseda H,Okano K,et al.How microcystin-degrading bacteria express microcystin degradation activity[J].Lakes and Reservoirs: Research and Management,2011,16(3):169-178. |
33 | Hoefel D,Adriansen C M M,Bouyssou M A C,et al.Development of anmlrA gene-directed TaqMan PCR assay for quantitative assessment of microcystin-degrading bacteria within water treatment plant sand filter biofilms[J].Applied and Environmental Microbiology,2009,75(15):5167-5169. |
34 | Ho L,Hoefel D,Palazot S,et al.Investigations into the biodegradation of microcystin-LR in wastewaters[J].Journal of Hazardous Materials,2010,180(1/2/3):628-633. |
35 | Li J,Peng L,Li J,et al.Divergent responses of functional gene expression to various nutrient conditions during microcystin-LR biodegradation byNovosphingobium sp. THN1 strain[J].Bioresource Technology,2014,156:335-341. |
36 | Ho L,Tang T,Monis P T,et al.Biodegradation of multiple cyanobacterial metabolites in drinking water supplies[J].Chemosphere,2012,87(10):1149-1154. |
37 | Maghsoudi E,Fortin N,Greer C,et al.Cyanotoxin degradation activity andmlr gene expression profiles of aSphingopyxis sp. isolated from Lake Champlain, Canada[J].Environmental Science: Processes and Impacts,2016,18(11):1417-1426. |
38 | Yu N Y,Wagner J R,Laird M R,et al.PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes[J].Bioinformatics,2010,26(13):1608-1615. |
39 | Krogh A,È Larsson B,Von Heijne G,et al.Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J].Journal of Molecular Biology,2001,305(3):567-580. |
40 | Yachdav G,Kloppmann E,Kajan L,et al.PredictProtein—an open resource for online prediction of protein structural and functional features[J].Nucleic Acids Research,2014,42(W1):W337-W343. |
41 | Xu Q,Fan J,Yan H,et al.Structural basis of microcystinase activity for biodegrading microcystin-LR[J].Chemosphere,2019,236:124281. |
42 | Dolence J M,Steward L E,Dolence E K,et al.Studies with recombinantSaccharomyces cerevisiae CaaX prenyl protease Rce1p[J].Biochemistry,2000,39(14):4096-4104. |
43 | Kjos M,Snipen L,Salehian Z,et al.The Abi proteins and their involvement in bacteriocin self-immunity[J].Journal of Bacteriology,2010,192(8):2068-2076. |
44 | Manolaridis I,Kulkarni K,Dodd R B,et al.Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1[J].Nature,2013,504(7479):301-305. |
45 | 吴涓,钟升,王光云,等.一株降解微囊藻毒素菌种的鉴定及其活性研究[J].中国环境科学,2011,31(1):116-122. |
Wu J,Zhong S,Wang G Y,et al.Identification and activity of a bacterial strain for the biodegradation of microcystins[J].China Environmental Science,2011,31(1):116-122. | |
46 | 周洁,闫海,何宏胜,等.食酸戴尔福特菌USTB04生物降解微囊藻毒素的活性研究[J].科学技术与工程,2006,6(2):166-170. |
Zhou J,Yan H,He H S,et al.Activity ofDelftic acidovorans for the biodegradation of microcystins [J].Science Technology and Engineering,2006,6(2):166-170. | |
47 | Ho L,Tang T,Monis P T,et al.Biodegradation of multiple cyanobacterial metabolites in drinking water supplies[J].Chemosphere,2012,87(10):1149-1154. |
48 | Wang X,Utsumi M,Gao Y,et al.Influences of metal ions on microcystin-LR degradation capacity and dynamics in microbial distribution of biofilm collected from water treatment plant nearby Kasumigaura Lake[J].Chemosphere,2016,147:230-238. |
49 | Feng L,Yan H,Wu Z,et al.Structure of a site-2 protease family intramembrane metalloprotease[J].Science,2007,318(5856):1608-1612. |
50 | Pryor E E,Horanyi P S,Clark K M,et al.Structure of the integral membrane protein CAAX protease Ste24p[J].Science,2013,339(6127):1600-1604. |
51 | Quigley A,Dong Y Y,Pike A C W,et al.The structural basis of ZMPSTE24-dependent laminopathies[J].Science,2013,339(6127):1604-1607. |
52 | Fujinaga M,Cherney M M,Oyama H,et al.The molecular structure and catalytic mechanism of a novel carboxyl peptidase fromScytalidium lignicolum[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(10):3364-3369. |
53 | Baker R P,Young K,Shi Y,et al.Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(20):8257-8262. |
54 | Ben-Shem A,Fass D,Bibi E.Structural basis for intramembrane proteolysis by rhomboid serine proteases[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(2):462-466. |
55 | Wang Y,Ha Y.Open-cap conformation of intramembrane protease GlpG[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(7):2098-2102. |
56 | Vinothkumar K R,Strisovsky K,Andreeva A,et al.The structural basis for catalysis and substrate specificity of a rhomboid protease[J].The EMBO Journal,2010,29(22):3797-3809. |
57 | Madeira F,Lee J,Buso N,et al.The EMBL-EBI search and sequence analysis tools APIs in 2019[J].Nucleic Acids Research,2019,47(W1):W636-W641. |
58 | United Nations Children s Fund (UNICEF),World Health Organization (WHO).Progress on household drinking water,sanitation and hygiene 2000-2017: special focus on inequalities[R].New York:UNICEF and WHO,2019:7-9. |
59 | Díez-Quijada L,Prieto A I,Guzmán-Guillén R,et al.Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: a review[J].Food and Chemical Toxicology,2019,125:106-132. |
60 | Valeria A M,Ricardo E J,Stephan P,et al.Degradation of microcystin-RR bySphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba–Argentina)[J].Biodegradation,2006,17(5):447-455. |
61 | Yan H,Wang J,Chen J,et al.Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded bySphingopyxis sp. USTB-05[J].Chemosphere,2012,87(1):12-18. |
62 | 王俊峰.鞘氨醇单胞菌USTB-05降解微囊藻毒素-RR第一个基因的克隆与表达[D].北京:北京科技大学,2012:104-105. |
Wang J F.Cloning and expression of first gene involved in the biodegradation of microcystin-RR bySphingopyxis sp. USTB-05[D].Beijing:University of Science and Technology Beijing,2012:104-105. | |
63 | 闫海,王华生,刘晓璐,等.微囊藻毒素微生物降解途径与分子机制研究进展[J].环境科学,2014,35(3):1205-1214. |
Yan H,Wang H S,Liu X L,et al.Advances in the pathway and molecular mechanism for the biodegradation of microcystins[J].Environmental Science,2014,35(3):1205-1214. | |
64 | Hashimoto E H,Kato H,Kawasaki Y,et al.Further investigation of microbial degradation of microcystin using the advanced Marfey method[J].Chemical Research in Toxicology,2009,22(2):391-398. |
65 | Manya H,Chiba A,Yoshida A,et al.Demonstration of mammalian proteinO-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(2):500-505. |
66 | Harke M J,Steffen M M,Gobler C J,et al.A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium,Microcystis spp.[J].Harmful Algae,2016,54:4-20. |
67 | 冯旭东,吕波,李春.酶分子稳定性改造研究进展[J].化工学报,2016,67(1):277-284. |
Feng X D,Lü B,Li C.Advances in enzyme stability modification[J].CIESC Journal,2016,67(1):277-284. | |
68 | 赵道辉,彭春望,廖晨伊,等.面向生物能源的酶固定化的计算机模拟[J].化工学报,2014,65(5):1828-1834. |
Zhao D H,Peng C W,Liao C Y,et al.Computer simulation of bioenergy-oriented enzyme immobilization[J].CIESC Journal,2014,65(5):1828-1834. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[7] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[8] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[9] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[10] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[11] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[12] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[13] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[14] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[15] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||