化工学报 ›› 2020, Vol. 71 ›› Issue (3): 936-944.DOI: 10.11949/0438-1157.20191234
刘艳奇1,2,何路东1,2,廉培超1,2,陈鑫智1,2(),梅毅1,2
收稿日期:
2019-10-23
修回日期:
2019-12-18
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
陈鑫智
基金资助:
Yanqi LIU1,2,Ludong HE1,2,Peichao LIAN1,2,Xinzhi CHEN1,2(),Yi MEI1,2
Received:
2019-10-23
Revised:
2019-12-18
Online:
2020-03-05
Published:
2020-03-05
Contact:
Xinzhi CHEN
摘要:
黑磷烯是一种新型的二维材料,具有高的载流子迁移率,可调节的直接带隙,独特的各向异性物理化学性质,在储能、光电、医药、传感器等领域具有广阔的应用前景。由于黑磷烯容易在潮湿和氧气存在的环境条件下发生氧化降解,限制了其实际的应用。综述了黑磷烯的不稳定机制并总结了相关研究者近年来针对提高黑磷烯稳定性的一些策略与方法,并介绍了本课题组在解决黑磷烯稳定性方面的工作进展,对未来提高黑磷烯的稳定性方法进行了展望。
中图分类号:
刘艳奇, 何路东, 廉培超, 陈鑫智, 梅毅. 黑磷烯稳定性增强研究进展[J]. 化工学报, 2020, 71(3): 936-944.
Yanqi LIU, Ludong HE, Peichao LIAN, Xinzhi CHEN, Yi MEI. Progress on stability enhancement of black phosphorene[J]. CIESC Journal, 2020, 71(3): 936-944.
1 | Yi Y, Yu X F, Zhou W, et al. Two-dimensional black phosphorus: synthesis, modification, properties, and applications[J]. Materials Science and Engineering: R: Reports, 2017, 120: 1-33. |
2 | Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. |
3 | Liao L, Lin Y C, Bao M Q, et al. High-speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467(7313): 305-308. |
4 | Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496. |
5 | Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
6 | Tan C L, Lai Z C, Zhang H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials[J]. Advanced Materials, 2017, 29(37): 25. |
7 | Li S, Liu X, Fan X, et al. New strategy for black phosphorus crystal growth through ternary clathrate[J]. Crystal Growth & Design, 2017, 17(12): 6579-6585. |
8 | Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. |
9 | Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. |
10 | Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 7. |
11 | Tran V, Soklaski R, Liang Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 6. |
12 | Li L, Chen L, Mukherjee S, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(2): 8. |
13 | Sun J, Lee H W, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10(11): 980-985. |
14 | Jiang Q Q, Xu L, Chen N, et al. Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction[J]. Angewandte Chemie-International Edition, 2016, 55(44): 13849-13853. |
15 | Sun Z B, Xie H H, Tang S Y, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angewandte Chemie-International Edition, 2015, 54(39): 11526-11530. |
16 | Wang M Q, Liang Y, Liu Y J, et al. Ultrasmall black phosphorus quantum dots: synthesis, characterization, and application in cancer treatment[J]. Analyst, 2018, 143(23): 5822-5833. |
17 | Ren X L, Mei Y, Lian P C, et al. A novel application of phosphorene as a flame retardant[J]. Polymers, 2018, 10(3): 227. |
18 | Zhou Q, Chen Q, Tong Y, et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection[J]. Angewandte Chemie-International Edition, 2016, 55(38): 11437-11441. |
19 | Sang D K, Wang H, Guo Z, et al. Recent developments in stability and passivation techniques of phosphorene toward next‐generation device applications[J]. Advanced Functional Materials, 2019, 29: 1903419. |
20 | Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523-4530. |
21 | Zhang C D, Lian J C, Yi W, et al. Surface structures of black phosphorus investigated with scanning tunneling microscopy[J]. Journal of Physical Chemistry C, 2009, 113(43): 18823-18826. |
22 | Appalakondaiah S, Vaitheeswaran G, Lebegue S, et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus[J]. Physical Review B, 2012, 86(3): 9. |
23 | Zhang Z, Zhao Y P, Ouyang G. Strain modulation of electronic properties of monolayer black phosphorus[J]. Journal of Physical Chemistry C, 2017, 121(35): 19296-19304. |
24 | Wu J X, Mao N N, Xie L M, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy[J]. Angewandte Chemie-International Edition, 2015, 54(8): 2366-2369. |
25 | Li B S, Lai C, Zeng G M, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications[J]. Small, 2019, 15(8): 30. |
26 | Lopez-Bezanilla A. Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties[J]. Physical Review B, 2016, 93(3): 10. |
27 | Fei R X, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus[J]. Nano Letters, 2014, 14(5): 2884-2889. |
28 | Fujihisa H, Akahama Y, Kawamura H, et al. Incommensurate structure of phosphorus phase Ⅳ[J]. Physical Review Letters, 2007, 98(17): 4. |
29 | Zhu Z, Guan J, Tomanek D. Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study[J]. Physical Review B, 2015, 91(16): 5. |
30 | Gong P L, Liu D Y, Yang K S, et al. Hydrostatic pressure induced three-dimensional dirac semimetal in black phosphorus[J]. Physical Review B, 2016, 93(19): 7. |
31 | Xiang Z J, Ye G J, Shang C, et al. Pressure-induced electronic transition in black phosphorus[J]. Physical Review Letters, 2015, 115(18): 5. |
32 | Guo H Y, Lu N, Dai J, et al. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers[J]. Journal of Physical Chemistry C, 2014, 118(25): 14051-14059. |
33 | Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging[J]. Nano Letters, 2014, 14(11): 6414-6417. |
34 | Sa B S, Li Y L, Qi J S, et al. Strain engineering for phosphorene: the potential application as a photocatalyst[J]. Journal of Physical Chemistry C, 2014, 118(46): 26560-26568. |
35 | Ling X, Huang S X, Hasdeo E H, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus [J]. Nano Letters, 2016, 16(7): 4731-4731. |
36 | Das S, Zhang W, Demarteau M, et al. Tunable transport gap in phosphorene[J]. Nano Letters, 2014, 14(10): 5733-5739. |
37 | Kou L Z, Chen C F, Smith S C. Phosphorene: fabrication, properties, and applications[J]. Journal of Physical Chemistry Letters, 2015, 6(14): 2794-2805. |
38 | Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127-2150. |
39 | 李玉苗. 黑磷薄膜材料的制备及其在器件中的应用[D]. 兰州: 兰州大学, 2019. |
Li Y M. Preparation of black phosphorus thin films and its application in devices[D]. Lanzhou: Lanzhou University, 2019. | |
40 | Luo Z, Maassen J, Deng Y X, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus[J]. Nature Communications, 2015, 6: 8. |
41 | Jain A, Mcgaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene[J]. Scientific Reports, 2015, 5: 5. |
42 | Qin G Z, Yan Q B, Qin Z Z, et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4854-4858. |
43 | Zhu L Y, Zhang G, Li B W. Coexistence of size-dependent and size-independent thermal conductivities in phosphorene[J]. Physical Review B, 2014, 90(21): 6. |
44 | Wei Q, Peng X H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus[J]. Applied Physics Letters, 2014, 104(25): 5. |
45 | Qin G Z, Yan Q B, Qin Z Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance[J]. Scientific Reports, 2014, 4: 8. |
46 | 王佳瑛. 黑磷光电特性及其异质结器件研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Wang J Y. Electric and optoelectronic properties of black phosphorus and related heterostructures[D]. Harbin: Harbin Institute of Technology, 2015. | |
47 | Smith J B, Hagaman D, Ji H F. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 8. |
48 | Lewis E A, Brent J R, Derby B, et al. Solution processing of two-dimensional black phosphorus[J]. Chemical Communications, 2017, 53(9): 1445-1458. |
49 | Yang Z B, Hao J H, Yuan S G, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J]. Advanced Materials, 2015, 27(25): 3748-3754. |
50 | Lu W, Nan H, Hong J, et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Research, 2014, 7(6): 853-859. |
51 | Brent J R, Savjani N, Lewis E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341. |
52 | Tang X, Liang W, Zhao J, et al. Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability[J]. Small, 2017, 13(47): 1702739. |
53 | Liu H, Lian P, Zhang Q, et al. The preparation of holey phosphorene by electrochemical assistance[J]. Electrochemistry Communications, 2019, 98: 124-128. |
54 | Yang Y, Chen X, Lian P, et al. Production of phosphorene from black phosphorus via sonication and microwave Co-assisted aqueous phase exfoliation[J]. Chemistry Letters, 2018, 47(12): 1478-1481. |
55 | Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001. |
56 | Ziletti A, Carvalho A, Campbell D K, et al. Oxygen defects in phosphorene[J]. Physical Review Letters, 2015, 114(4): 5. |
57 | Wood J D, Wells S A, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation[J]. Nano Letters, 2014, 14(12): 6964-6970. |
58 | Kim J S, Liu Y, Zhu W, et al. Toward air-stable multilayer phosphorene thin-films and transistors[J]. Scientific Reports, 2015, 5: 8989. |
59 | Favron A, Gaufres E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832. |
60 | Pei J, Gai X, Yang J, et al. Producing air-stable monolayers of phosphorene and their defect engineering[J]. Nature Communications, 2016, 7: 10450. |
61 | Liang S, Wu L, Liu H, et al. Organic molecular passivation of phosphorene: an aptamer-based biosensing platform[J]. Biosens Bioelectron, 2019, 126: 30-35. |
62 | Son Y, Kozawa D, Liu A T, et al. A study of bilayer phosphorene stability under MoS2-passivation[J]. 2D Materials, 2017, 4(2): 025091. |
63 | Chen X, Wu Y, Wu Z, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations[J]. Nature Communications, 2015, 6: 7315. |
64 | Xing C Y, Jing G H, Liang X, et al. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air[J]. Nanoscale, 2017, 9(24): 8096-8101. |
65 | Ryder C R, Wood J D, Wells S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry[J]. Nature Chemistry, 2016, 8(6): 597-602. |
66 | Zhao Y, Wang H, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie-International Edition, 2016, 55(16): 5003-5007. |
67 | Zhu X, Zhang T, Jiang D, et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules[J]. Nature Communications, 2018, 9(1): 4177. |
68 | Liu H, Lian P, Tang Y, et al. Facile synthesis of an air-stable 3D reduced graphene oxide-phosphorene composite by sonication[J]. Applied Surface Science, 2019, 476: 972-981. |
69 | Li H, Lian P, Lu Q, et al. Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure[J]. Materials Research Express, 2019, 6(6): 065504. |
70 | Ren X, Mei Y, Lian P, et al. Fabrication and application of black phosphorene/graphene composite material as a flame retardant[J]. Polymers, 2019, 11(2): 193. |
71 | Yang B, Wan B, Zhou Q, et al. Te-doped black phosphorus field-effect transistors[J]. Advanced Materials, 2016, 28(42): 9408-9415. |
72 | Lv W, Yang B, Wang B, et al. Sulfur-doped black phosphorus field-effect transistors with enhanced stability[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9663-9668. |
73 | Wang Z, Lu J, Wang J, et al. Air-stable n-doped black phosphorus transistor by thermal deposition of metal adatoms[J]. Nanotechnology, 2019, 30(13): 135201. |
74 | Xu Y, Yuan J, Zhang K, et al. Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility[J]. Advanced Functional Materials, 2017, 27(38): 1702211. |
75 | 沈海云. 二维黑磷材料结构及其性质的理论研究[D]. 南京: 东南大学, 2018. |
Shen H Y. Theoretical study about the structure and properties of two-dimensional black phosphorus material[D]. Nanjing: Southeast University, 2018. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[6] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[7] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[10] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[11] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[14] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[15] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||