化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 123-129.DOI: 10.11949/0438-1157.20190571
收稿日期:
2019-05-27
修回日期:
2019-05-29
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
郭航
作者简介:
罗潇(1991—),男,硕士研究生,基金资助:
Xiao LUO(),Hang GUO(),Fang YE,Chongfang MA
Received:
2019-05-27
Revised:
2019-05-29
Online:
2019-09-06
Published:
2019-09-06
Contact:
Hang GUO
摘要:
采用真空蒸发镀膜技术设计制作了以云母为基片的薄膜热传感器,传感器包括一个用于热流测量的热电堆和一个用于温度测量的热电偶。综合测试发现:云母基片薄膜热传感器性能良好。封装后,薄膜热电偶的静态标定拟合直线相关系数均可以达到0.999。薄膜热流计的静态标定拟合直线的相关系数为0.99439,测头系数为8.78886 W/(m2?μV),灵敏度为0.11378 μV/(W/m2)。薄膜热电偶的动态响应时间是0.446 s且具有良好的复现性。随着加载热流的增大,薄膜热流计的动态响应时间变大,阶跃热流值为600 W/m2时响应时间为0.483 s。
中图分类号:
罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
Xiao LUO, Hang GUO, Fang YE, Chongfang MA. Experiment of thin film thermal sensor based on vacuum coating technology[J]. CIESC Journal, 2019, 70(S2): 123-129.
材料 | 厚度/ mm | 膨胀系数/(μm/K) | 热导率/ (W/(m·K)) | 比热容/(kJ/(kg·K)) |
---|---|---|---|---|
云母 | 0.1 | 15~25 | 0.55 | 0.836 |
表1 云母基片的厚度和物理性质
Table 1 Thickness and physical properties of mica substrate
材料 | 厚度/ mm | 膨胀系数/(μm/K) | 热导率/ (W/(m·K)) | 比热容/(kJ/(kg·K)) |
---|---|---|---|---|
云母 | 0.1 | 15~25 | 0.55 | 0.836 |
1 | 邓元, 张义政, 王瑶, 等. 柔性热电薄膜器件的研究进展[J]. 航空学报, 2014, 35(10): 2733-2746. |
DengY, ZhangY Z, WangY, et al. Research progress on the flexible thin-film thermoelectric devices[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2733-2746. | |
2 | HsiaoC C, WuY S. Fabrication of flexible thin-film thermoelectric generators[J]. Journal of the Chinese Institute of Engineers, 2011, 34(6): 809-816. |
3 | 刘海军, 蒋洪川, 吴勐, 等. 陶瓷基Pt/ITO薄膜热电偶的制备与性能研究[J]. 传感器与微系统, 2015, 34(3): 18-20. |
LiuH J, JiangH C, WuM, et al. Preparation and properties study of Pt/ITO thin-film thermocouple on ceramic substrates[J]. Transducer and Microsystem Technologies, 2015, 34(3): 18-20. | |
4 | GlatzW, MuntwylerS, HieroldC. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator[J]. Sensors and Actuators A Physical, 2006, 132(1): 337-345. |
5 | SatishT N, RakeshK P, UmaG, et al. Functional validation of K-type (NiCr-NiMn) thin film thermocouple on low pressure turbine nozzle guide vane (LPT NGV) of gas turbine engine[J]. Experimental Techniques, 2016, 41(2): 1-8. |
6 | WangW L, ZhangH, DuX J, et al. PCB-integrated thin film thermocouples for transient temperature measurement[J]. Electronics Letters, 2016, 52(13): 1140-1141. |
7 | 祁漫宇, 丁炯, 杨遂军, 等. 薄膜热电偶温度传感器动态标定的仿真研究[J]. 计算机仿真, 2016, 33(6): 325-330. |
QiM Y, DingJ, YangS J, et al. Simulation research on thin-film thermocouple temperature sensor dynamic character calibration[J]. Computer Simulation, 2016, 33(6): 325-330. | |
8 | 周川, 马勤弟. 基于神经网络辨识的表面温度传感器动态标定及瞬态温度测量[J]. 应用科学学报, 1999, 17(1): 45-50. |
ZhouC, MaQ D. A new method of surface temperature sensor dynamic calibration and transient temperature measurement based on neural networks identification[J]. Journal of Applied Sciences, 1999, 17(1): 45-50. | |
9 | ChuD, BilirD T, PeaseR F W, et al. Thin film nano thermocouple sensors for applications in laser and electron beam irradiation[C]//The 12th Transducers, Solid-State Sensors, Actuators and Microsystems, International Conference. Boston, 2003: 1112-1115. |
10 | 蒋均颖. 用于燃料电池温度和热流测量的薄膜传感器的实验研究[D]. 北京: 北京工业大学, 2012. |
JiangJ Y. Experimental study of thin film sensors for measuring temperature and heat flux inside fuel cells[D]. Beijing: Beijing University of Technology, 2012. | |
11 | 聂志华. 用于小型燃料电池内部参数测量的瞬态热流计实验研究[D]. 北京: 北京工业大学, 2011. |
NieZ H. Experimental study of transient heat flux sensor for parameters measurement inside small fuel cells[D]. Beijing: Beijing University of Technology, 2011. | |
12 | 曾祥森, 崔云先, 张志军,等. 新型薄膜切削温度传感器动态特性的理论计算[J]. 大连交通大学学报, 2007, 28(2): 21-24. |
ZengX S, CuiY X, ZhangZ J, et al. The theoretical calculation of dynamic characteristics of a new thin-film cutting-temperature sensor[J]. Journal of Dalian Jiaotong University, 2007, 28(2): 21-24. | |
13 | JinX H, MaB H, QiuT, et al. ITO thin film thermocouple for transient high temperature measurement in scramjet combustor[C]//International Conference on Solid-State Sensors, Actuators and Microsystems. Kaohsiung, Taiwan, China, 2017: 1148-1151. |
14 | ZhangZ, TianB, YuQ, et al. A protected tungsten-rhenium thin film thermocouples sensor[C]//International Conference on Nano/micro Engineered and Molecular Systems. Los Angeles, CA, USA, 2017: 796-799. |
15 | 杨丽红, 赵源深. 基于尺寸效应的Cu/CuNi薄膜热电偶灵敏度研究[J]. 电子元件与材料, 2011, 30(11): 16-18. |
YangL H, ZhaoY S. Study on the sensitivity of Cu/CuNi thin-film thermocouple based on size effect[J]. Electronic Components and Materials, 2011, 30(11): 16-18. | |
16 | EwingJ, GiffordA, HubbleD, et al. A direct-measurement thin-film heat flux sensor array[J]. Measurement Science & Technology, 2010, 21(10): 1-8. |
17 | JaspersonB A, SchmaleJ, QuW, et al. Thin film heat flux sensors fabricated on copper substrates for thermal measurements in microfluidic environments[J]. Journal of Micromechanics & Microengineering, 2014, 24(24): 1-11. |
18 | AzerouB, GarnierB, LahmarJ. Thin film heat flux sensors for accurate transient and unidirectional heat transfer analysis[C]//The 6th European Thermal Sciences Conference. Poitiers, France, 2012: 1-8. |
19 | AmmarH, GarnineB, MoctarA O E, et al. Thermal analysis of chemical reactions in microchannels using highly sensitive thin-film heat-flux microsensor[J]. Chemical Engineering Science, 2013, 94(5): 150-155. |
20 | FrankelJ I, KeyhaniM. Theoretical development of a new surface heat flux calibration method for thin-film resistive temperature gauges and co-axial thermocouples[J]. Shock Waves, 2013, 23(2): 177-188. |
21 | 于景荣, 衣宝廉, 张华民, 等. 微型燃料电池的研究与发展[J]. 电源技术, 2004, 28(8): 515-519. |
YuJ R, YiB L, ZhangH M, et al. Research and development of micro fuel cells[J]. Chinese Journal of Power Sources, 2004, 28(8): 515-519. | |
22 | 刘佳兴. 基于薄膜传感器的燃料电池内部分布式热测量研究[D]. 北京: 北京工业大学, 2013. |
LiuJ X. Study of distributed thermal measurement in fuel cells based on thin film sensors[D]. Beijing: Beijing University of Technology, 2013. | |
23 | HeS, MenchM M, TadigadepaS. Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell[J]. Sensors & Actuators A Physical, 2006, 125(2): 170-177. |
24 | 吴铄, 叶芳, 郭航, 等. 不同材料基片薄膜热传感器实验研究[J]. 中国科技论文, 2015, 10(23): 2697-2700+2706. |
WuS, YeF, GuoH, et al. Experimental study of thin film thermal sensors on different material substrates[J]. China Sciencepaper, 2015, 10(23): 2697-2700+2706. | |
25 | LeeC Y, ChangC L, ChanP C, et al. Fabrication of micro-sensors based on a parylene thin-film substrate for monitoring proton exchange membrane fuel cells[C]//2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Xiamen, Fujian, China, 2010: 102-105. |
26 | LeeC Y, ChanP C, LeeC J. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell[J]. Sensors, 2010, 12(10): 11605-11617. |
27 | LeeC Y, SuA, LiuY C, et al. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor[J]. Sensors, 2009, 9(7): 5068-5075. |
28 | LeeC Y, LinC H, LoY M. Fabrication of a flexible micro temperature sensor for micro reformer applications[J]. Sensors, 2011, 11(4): 3706-3716. |
29 | LeeC Y, LeeS J, ShenC C, et al. In-situ measurement of the local temperature distributions for the steam reforming of a methanol micro reformer by using flexible micro temperature sensors[J]. International Journal of Hydrogen Energy, 2011, 36(4): 2869-2876. |
30 | 黄泽铣. 热电偶原理及其检定[M]. 北京: 中国计量出版社, 1993. |
HuangZ X. Principle and Calibration of Thermocouples [M]. Beijing: China Metrology Publishing House, 1993. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[14] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[15] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||