化工学报 ›› 2020, Vol. 71 ›› Issue (1): 306-313.DOI: 10.11949/0438-1157.20191258
收稿日期:
2019-10-23
修回日期:
2019-10-31
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
毛建新
作者简介:
毛建新(1967—),男,博士,副教授,基金资助:
Jianxin MAO(),Ziqing YUAN,Hongxiao YANG,Renxian ZHOU
Received:
2019-10-23
Revised:
2019-10-31
Online:
2020-01-05
Published:
2020-01-05
Contact:
Jianxin MAO
摘要:
以Pt/SBA-15为催化剂,考察催化剂载体中添加Sm对于苯的完全氧化反应活性和热稳定性影响。采用了一种简便的记录起燃温度曲线和催化剂热稳定性评价方法,即向装载好催化剂的固定床反应器中持续通入恒定流量的反应气,逐步阶段性升高反应温度,同时在线检测出口尾气的浓度变化, 得到起燃温度曲线后,继续提高反应温度,然后恒定在某一设定的温度(如550℃)持续运行较长时间, 期间定时在线取样分析,如果有必要还可以连续考察降温情况下催化剂的反应活性情况。研究结果表明,几种催化剂低温活性次序为:Pt/SBA-15≈Pt/4%Sm2O3/SBA-15> Pt/Sm2O3> 4%Sm2O3/SBA-15,而对于高温稳定性则是Pt/4%Sm2O3/SBA-15> Pt/1.2%Sm2O3/SBA-15> Pt/SBA-15,Pt/Sm-SBA-15(SG)> Pt/SBA-15(SG)。总之,Sm的添加虽然未能提高Pt/SBA-15的低温催化活性,但是能明显提高催化剂在高温情况下活性的稳定性。1%Pt/4%Sm2O3/SBA-15同时具备较好的低温催化活性和高温稳定性,具有较好的应用前景。
中图分类号:
毛建新, 袁子卿, 严红绡, 周仁贤. 添加Sm对Pt /SBA-15催化苯完全氧化反应活性和热稳定性的影响[J]. 化工学报, 2020, 71(1): 306-313.
Jianxin MAO, Ziqing YUAN, Hongxiao YANG, Renxian ZHOU. Effects of Sm addition on reactivity and thermal stability of Pt/SBA-15 for catalytic complete oxidation of benzene[J]. CIESC Journal, 2020, 71(1): 306-313.
No. | Catalyst | Pt/ %(mass) | Sm2O3/ %(mass) | Pore diameter/ nm | SBET/ (m2/g) | Vpore/ (cm3/g) |
---|---|---|---|---|---|---|
1 | SBA-15 | 0 | 0 | 10.6 | 473 | 1.22 |
2 | Pt/SBA-15 | 1 | 0 | 8.0 | 355 | 0.84 |
3 | Pt/1.2%Sm2O3/SBA-15 | 1 | 1.2 | 9.0 | 455 | 1.01 |
4 | Pt/4%Sm2O3/SBA-15 | 1 | 4.0 | 7.9 | 442 | 1.08 |
5 | Pt/SBA-15(SG) | 1 | 0 | 5.2 | 428 | 0.71 |
6 | Pt/Sm-SBA-15(SG) | 1 | 4.0 | 3.6 | 371 | 0.43 |
表1 部分催化剂的孔径、比表面积和孔体积
Table 1 Pore diameter, SBET and pore volume of some catalysts
No. | Catalyst | Pt/ %(mass) | Sm2O3/ %(mass) | Pore diameter/ nm | SBET/ (m2/g) | Vpore/ (cm3/g) |
---|---|---|---|---|---|---|
1 | SBA-15 | 0 | 0 | 10.6 | 473 | 1.22 |
2 | Pt/SBA-15 | 1 | 0 | 8.0 | 355 | 0.84 |
3 | Pt/1.2%Sm2O3/SBA-15 | 1 | 1.2 | 9.0 | 455 | 1.01 |
4 | Pt/4%Sm2O3/SBA-15 | 1 | 4.0 | 7.9 | 442 | 1.08 |
5 | Pt/SBA-15(SG) | 1 | 0 | 5.2 | 428 | 0.71 |
6 | Pt/Sm-SBA-15(SG) | 1 | 4.0 | 3.6 | 371 | 0.43 |
图4 1%Pt/4%Sm2O3/SBA-15催化剂的HAADF-STEM图像及其几种主要元素的分布情况
Fig.4 HAADF-STEM image of 1%Pt/4%Sm2O3/SBA-15 as well as corresponding element O, Si, Sm and Pt maps
图6 Pt/SBA-15和Sm2O3/SBA-15催化剂在较高温度条件下反应的转化率随时间的变化
Fig.6 Relationship of benzene conversion with reaction time at higher temperature over 1%Pt/SBA-15 and Sm2O3/SBA-15 respectively
图7 1%Pt/4% Sm2O3/SBA-15和1%Pt/1.2% Sm2O3/SBA-15催化剂在较高温度条件下反应的转化率随时间的变化
Fig.7 Relationship of conversion of benzene with reaction time at higher temperature over 1%Pt/4% Sm2O3/SBA-15 and 1%Pt/1.2% Sm2O3/SBA-15 respectively
图8 1%Pt/SBA-15(SG)和1%Pt/Sm-SBA-15(SG)催化剂在高温条件下反应稳定性的比较
Fig.8 Reaction stability comparison of 1%Pt/SBA-15(SG) and 1%Pt/Sm-SBA-15(SG) at higher temperature
1 | Zhao D Y, Feng J L, Huo Q H.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores[J]. Science, 1998, 279(5350): 548-552. |
2 | Zhu J, Wang T, Xu X, et al. Pt nanoparticles supported on SBA-15: synthesis, characterization and applications in heterogeneous catalysis[J]. Applied Catalysis B-Environmental, 2013, 130: 197-217. |
3 | Pushkarev V V, An K, Alayoglu S, et al. Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: elucidation of the Pt particle size effect on reaction kinetics[J]. Journal of Catalysis, 2012, 292: 64-72. |
4 | Chytil S, Glomm W R, Kvande I, et al. Platinum incorporated into the SBA-15 mesostructure via deposition-precipitation method: Pt nanoparticle size estimation and catalytic testing[J].Topics in Catalysis, 2007, 45(1/2/3/4): 93-99. |
5 | Konya Z, Molnar E, Tasi G, et al. Pre-prepared platinum nanoparticles supported on SBA-15 - preparation, pretreatment conditions and catalytic properties[J]. Catalysis Letters, 2007, 113(1/2): 19-28. |
6 | Kumar M S, Chen D, Walmsley J C, et al. Dehydrogenation of propane over Pt-SBA-15: effect of Pt particle size[J]. Catalysis Communications, 2008, 9(5): 747-750. |
7 | Kumar M S, Chen D, Holmen A, et al. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15: effect of Sn on the dispersion of Pt and catalytic behavior[J]. Catalysis Today, 2009, 142(1/2): 17-23. |
8 | Li J, Wang J, Ma Z, et al. Preparation of platinum nanoparticle catalyst for propane dehydrogenation[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 6977-6983. |
9 | Kim D J, Kim J W, Choung S J, et al. The catalytic performance of Pt impregnated MCM-41 and SBA-15 in selective catalytic reduction of NOx[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(3): 308-314. |
10 | Liu X, Jiang Z, Chen M, et al. Characterization and performance of Pt/SBA-15 for low-temperature SCR of NO by C3H6[J]. Journal of Environmental Sciences, 2013, 25(5): 1023-1033. |
11 | Chen G, Zheng Y, Cai G, et al. Preparation of promoted Pt/SBA-15 and effect of cerium on the catalytic activity over carbon monoxide oxidation conversion reaction[J]. Catalysis Letters, 2009, 133(3/4): 354-361. |
12 | Yang C, Wang Z, Zhou X, et al. A mesoporous Pt-SBA-15 nano architecture with catalytic functions on oxidation of CO[J]. Journal of Porous Materials, 2011, 18(1): 31-35. |
13 | 卢泽湘, 吴平易, 季生福, 等. Pt/SBA-15、Pt/SBA-16催化剂的合成、表征及甲烷催化燃烧性能[J]. 分子催化, 2008, 22(4): 368-373. |
Lu Z X, Wu P Y, Ji S F, et al. Synthesis, characterization of Pt/SBA-15 and Pt/SBA-16 catalysts and their methane catalytic combustion performances[J]. Journal of Molecular Catalysis (China), 2008, 22(4): 368-373. | |
14 | Tang W, Wu X, Chen Y. Catalytic removal of gaseous benzene over Pt/SBA-15 catalyst: the effect of the preparation method[J]. Reaction Kinetics Mechanisms and Catalysis, 2015, 114(2): 711-723. |
15 | Lai Y T, Chen T C, Lan Y K, et al. Pt/SBA-15 as a highly efficient catalyst for catalytic toluene oxidation[J]. ACS Catalysis, 2014, 4(11): 3824-3836. |
16 | Uson L, Hueso J L, Sebastian V, et al. In-situ preparation of ultra-small Pt nanoparticles within rod-shaped mesoporous silica particles: 3-D tomography and catalytic oxidation of n-hexane[J]. Catalysis Communications, 2017, 100: 93-97. |
17 | Park J I, Lee J K, Miyawaki J, et al. Catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs) over SBA-15 supported metal catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(2): 271-276. |
18 | Chen Z, Mao J, Zhou R. Preparation of size-controlled Pt supported on Al2O3 nanocatalysts for deep catalytic oxidation of benzene at lower temperature[J]. Applied Surface Science, 2019, 465: 15-22. |
19 | Laura U, Arruebo M, Sebastian V. Towards the continuous production of Pt-based heterogeneous catalysts using microfluidic systems[J]. Dalton Transactions, 2018, 47(5): 1693-1702. |
20 | 唐铨, 郭杨龙, 詹望成, 等. 用于丙烷催化燃烧的PdxPty-ZSM-5/Cordierite整体式催化剂[J]. 化工学报, 2019, 70(3): 944-950. |
Tang Q, Guo Y L, Zhan W C, et al. Catalytic combustion of propane over PdxPty-ZSM-5/cordierite monolithic catalyst [J]. CIESC Journal, 2019, 70(3): 944-950. | |
21 | 余鸿敏, 卢晗锋, 陈银飞. Pt掺杂对Cu-Mn-Ce复合氧化物催化燃烧性能的影响[J]. 化工学报, 2011, 62(4): 947-952. |
Yu H M, Lu H F, Chen Y F. Influence of doped Pt on catalytic combustion performance of Cu-Mn-Ce oxide catalysts[J]. CIESC Journal, 2011, 62(4): 947-952. | |
22 | Seo H J, Kim Y S. Partial oxidation of methane to syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts[J]. Applied Chemistry for Engineering, 2017, 28(6): 720-725. |
23 | Bendahou K, Cherif L, Siffert S, et al. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene[J]. Applied Catalysis A-General, 2008, 351(1): 82-87. |
24 | Wang X G, Landau M V, Rotter H, et al. TiO2 and ZrO2 crystals in SBA-15 silica: performance of Pt/TiO2(ZrO2)/SBA-15 catalysts in ethyl acetate combustion[J]. Journal of Catalysis, 2004, 222(2): 565-571. |
25 | Pirez C, Morin J C, Manayil J C, et al. Sol-gel synthesis of SBA-15: impact of HCl on surface chemistry[J]. Microporous and Mesoporous Materials, 2018, 271: 196-202. |
26 | Mu Z, Li J J, Hao Z P, et al. Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study[J]. Microporous and Mesoporous Materials, 2008, 113(1): 72-80. |
27 | Wang H, Yang W, Tian P, et al. A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature[J]. Applied Catalysis A: General, 2017, 529: 60-67. |
28 | 郑芳芳, 李倩, 张宏, 等. 抗烧结Rh-Sm2O3/SiO2催化剂的制备和表征及其甲烷部分氧化制合成气性能[J]. 物理化学学报, 2017, 33(8): 1689-1698. |
Zheng F F, Li Q, Zhang H, et al. Preparation and characterization of sinter-resistant Rh-Sm2O3/SiO2 catalyst and its performance for partial oxidation of methane to syngas[J]. Acta Phys. -Chim. Sin., 2017, 33 (8): 1689-1698. | |
29 | Wang H, Tian P, Chen Z, et al. Effect of coke formation on catalytic activity tests for catalytic combustion of toluene: the difficulty of measuring TOF and T98 accurately[J]. Chemical Engineering Communications, 2019, 206(1): 22-32. |
30 | Taherian Z, Yousefpour M, Tajally M, et al. A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16408-16420. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[7] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[13] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 437
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||