化工学报 ›› 2020, Vol. 71 ›› Issue (1): 297-305.DOI: 10.11949/0438-1157.20191152
收稿日期:
2019-10-09
修回日期:
2019-10-19
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
严新焕
作者简介:
吴辰亮(1995—),男,硕士研究生,Chenliang WU(),Xiaoqing LI,Chao ZHANG,Hefeng ZHANG,Xinhuan YAN()
Received:
2019-10-09
Revised:
2019-10-19
Online:
2020-01-05
Published:
2020-01-05
Contact:
Xinhuan YAN
摘要:
采用化学还原法制备亚价负载铁催化剂,通过空气氧化为Fe3+碱性活性中心。考察了该催化剂在碳酸丙烯酯与甲醇酯交换制备碳酸二甲酯反应中的活性和选择性。采用N2吸附-脱附、TEM、XRD、XPS和CO2-TPD等对所制备的催化剂进行了表征。结果表明:催化剂的表面结构与碱性是影响其活性的重要因素。相对于Fe或Ce单金属催化剂,Fe-Ce/SiO2催化剂的碱量大幅度提升,且Fe与Ce通过相互作用形成了稳定的非晶态结构。在醇酯比为15∶1、反应温度为140℃、催化剂用量为反应物总质量的0.5%、 Ce/Fe原子比为2∶1的反应条件下,碳酸丙烯酯转化率为88%,碳酸二甲酯的选择性为92%。催化剂在循环使用10次之后,其活性保持不变。
中图分类号:
吴辰亮, 李小青, 张超, 张荷丰, 严新焕. Fe-Ce/SiO2固体碱催化剂用于制备碳酸二甲酯[J]. 化工学报, 2020, 71(1): 297-305.
Chenliang WU, Xiaoqing LI, Chao ZHANG, Hefeng ZHANG, Xinhuan YAN. Fe-Ce/SiO2 solid base catalyst for preparing dimethyl carbonate[J]. CIESC Journal, 2020, 71(1): 297-305.
催化剂 | SBET① /(m2·g-1) | D② /(nm) | V③ /(cm3·g-1) |
---|---|---|---|
SiO2 | 193.7 | 14.84 | 1.37 |
10Ce/SiO2 | 162.9 | 7.35 | 1.12 |
2.5Fe-10Ce/SiO2 | 172.4 | 7.18 | 1.15 |
5Fe-10Ce/SiO2 | 171.8 | 8.06 | 1.09 |
7.5Fe-10Ce/SiO2 | 199.6 | 7.97 | 1.15 |
10Fe-10Ce/SiO2 | 224.5 | 8.56 | 1.04 |
表1 催化剂的孔隙结构参数
Table 1 Textural properties of different catalysts
催化剂 | SBET① /(m2·g-1) | D② /(nm) | V③ /(cm3·g-1) |
---|---|---|---|
SiO2 | 193.7 | 14.84 | 1.37 |
10Ce/SiO2 | 162.9 | 7.35 | 1.12 |
2.5Fe-10Ce/SiO2 | 172.4 | 7.18 | 1.15 |
5Fe-10Ce/SiO2 | 171.8 | 8.06 | 1.09 |
7.5Fe-10Ce/SiO2 | 199.6 | 7.97 | 1.15 |
10Fe-10Ce/SiO2 | 224.5 | 8.56 | 1.04 |
催化剂 | CO2吸附量/(mmol/g) | 总CO2吸附量/(mmol/g) | ||
---|---|---|---|---|
弱(<200℃) | 中等(200~450℃) | |||
5Fe/SiO2 | 0.04 | 0.71 | 0.75 | |
10Ce/SiO2 | 0.76 | 0.78 | 1.54 | |
2.5Fe-10Ce/SiO2 | 0.90 | 0.93 | 1.83 | |
5Fe-10Ce/SiO2 | 0.97 | 0.90 | 1.87 | |
7.5Fe-10Ce/SiO2 | 0.91 | 0.94 | 1.85 | |
10Fe-10Ce/SiO2 | 0.96 | 0.95 | 1.91 |
表2 催化剂的CO2吸附量
Table 2 Absorbed CO2 of catalysts
催化剂 | CO2吸附量/(mmol/g) | 总CO2吸附量/(mmol/g) | ||
---|---|---|---|---|
弱(<200℃) | 中等(200~450℃) | |||
5Fe/SiO2 | 0.04 | 0.71 | 0.75 | |
10Ce/SiO2 | 0.76 | 0.78 | 1.54 | |
2.5Fe-10Ce/SiO2 | 0.90 | 0.93 | 1.83 | |
5Fe-10Ce/SiO2 | 0.97 | 0.90 | 1.87 | |
7.5Fe-10Ce/SiO2 | 0.91 | 0.94 | 1.85 | |
10Fe-10Ce/SiO2 | 0.96 | 0.95 | 1.91 |
催化剂 | Ce/Fe比例 | PC转化率/% | DMC选择性/% |
---|---|---|---|
5Fe/SiO2 | — | 78 | 77 |
10Ce/SiO2 | — | 69 | 75 |
2.5Fe-10Ce/SiO2 | 4:1 | 83 | 84 |
5Fe-10Ce/SiO2 | 2:1 | 88 | 92 |
7.5Fe-10Ce/SiO2 | 4:3 | 81 | 84 |
10Fe-10Ce/SiO2 | 1:1 | 79 | 77 |
表3 催化剂的活性评价
Table 3 Catalytic performance test results
催化剂 | Ce/Fe比例 | PC转化率/% | DMC选择性/% |
---|---|---|---|
5Fe/SiO2 | — | 78 | 77 |
10Ce/SiO2 | — | 69 | 75 |
2.5Fe-10Ce/SiO2 | 4:1 | 83 | 84 |
5Fe-10Ce/SiO2 | 2:1 | 88 | 92 |
7.5Fe-10Ce/SiO2 | 4:3 | 81 | 84 |
10Fe-10Ce/SiO2 | 1:1 | 79 | 77 |
图7 反应温度的影响(反应压力 0.5 MPa,醇酯比 15∶1,催化剂质量分数0.5%,反应时间8 h)
Fig.7 Effect of reaction temperature on transesterification of propylene carbonate with methanol
图8 醇酯比的影响(反应压力0.5 MPa,反应温度140℃,催化剂质量分数0.5%,反应时间8 h)
Fig.8 Effect of methanol/PC molar ratio on transesterification of propylene carbonate with methanol
1 | Keller N, Rebmann G, Keller V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2010, 317(1/2): 1-18. |
2 | Ono Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block[J]. Applied Catalysis A General, 1997, 155(2): 133-136. |
3 | Delledonne D, Rivetti F, Romano U. Developments in the production and application of dimethylcarbonate[J]. Applied Catalysis A General, 2001, 221(1/2): 241-251. |
4 | Lu P F, Wang H J, Hu K K. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over the extruded CaO-based catalyst[J]. Chemical Engineering Journal, 2013, 228: 147-154. |
5 | Alvarez M G, Segarra A M, Contreras S, et al. Enhanced use of renewable resources: transesterification of glycerol catalyzed by hydrotalcite-like compounds[J]. Chemical Engineering Journal, 2010, 161(3): 340-345. |
6 | Li Z H, Cheng B W, Su K M, et al. The synthesis of diphenyl carbonate from dimethyl carbonate and phenol over mesoporous MoO3/SiMCM-41[J]. Journal of Molecular Catalysis A: Chemical, 2008, 289(1/2): 100-105. |
7 | 常雁红, 王化军. 酯交换法合成碳酸二甲酯研究进展[J]. 化工进展, 2007, 26(5): 642-646. |
Chang Y H, Wang H J. Process in synthesis of dimethyl carbonate via transesterification[J]. Chemical Industry and Engineering Progress, 2007, 26(5): 642-646. | |
8 | 赵峰, 刘绍英, 李建国, 等. 酯交换合成碳酸二甲酯催化剂研究进展[J]. 工业催化, 2006, 14(11): 6-11. |
Zhao F, Liu S Y, Li J G, et al. Latest researches in synthesis of dimethyl carbonate over transesterification catalysts[J]. Industrial Catalysis, 2006, 14(11): 6-11. | |
9 | Lee H J, Park S Y, Song I K, et al. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3/Ce0.6Zr0.4O2 catalysts: effect of acidity and basicity of the catalysts[J]. Catalysis Letters, 2011, 141(4): 531-537. |
10 | Zhao W B, Peng W C, Wang D F, et al. Zinc oxide as the precursor of homogeneous catalyst for synthesis of dialkyl carbonate from urea and alcohols[J]. Catalysis Communications, 2009, 10(5): 655-658. |
11 | 黄振东, 王睿, 于美青. KOH/ZrO2催化剂制备生物柴油工艺[J]. 化工学报, 2016, 67: 176-183. |
Huang Z D, Wang R, Yu M Q. New technique of biodiesel preparation catalyzed by KOH/ZrO2[J]. CIESC Journal, 2016, 67: 176-183. | |
12 | 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70: 15-22. |
Shang H, Ding Y, Zhang W H. Research progress of microwave assisted biodiesel production[J]. CIESC Journal, 2019, 70: 15-22. | |
13 | Liao Y, Li F, Pu Y, et al. Solid base catalysts derived from Ca-Al-X(X=F-, Cl- and Br-)layered double hydroxides for methanolysis of propylene carbonate[J]. RSC Advances, 2018, 8(2): 785-791. |
14 | Liao Y H, Li F, Dai X. Dimethyl carbonate synthesis over solid base catalysts from Ca-Al layered double hydroxides[J]. Chemical Papers, 2018, 72(8): 1963-1971. |
15 | Axel P, Wolfgang H, Karsten M. Dimethyl carbonate via transesterification of propylene carbonate with methanol over ion exchange resins[J]. Applied Catalysis B Environmental, 2012, 125: 486-491. |
16 | Kumar P, Srivastava V C, Mishra I M. Synthesis of dimethyl carbonate by transesterification reaction using ceria-zinc oxide catalysts prepared with different chelating agents[J]. Applied Clay Science, 2017, 150: 275-281. |
17 | Xu J, Long K Z, Wu F. Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate over a new mesoporous ceria catalyst[J]. Applied Catalysis A General, 2014, 484: 1-7. |
18 | Saada R, AboElazayem O, Kellici S, et al. Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalysts[J]. Applied Catalysis B Environmental, 2018, 226: 451-462. |
19 | Kumar P, Srivastava V C, Mishra I M. Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu-Zn-Al catalyst[J]. Energy & Fuels, 2015, 29(4): 2664-2675. |
20 | Nivangune N T, Ranade V V, Kelkar A A. MgFeCe ternary layered double hydroxide as highly efficient and recyclable heterogeneous base catalyst for synthesis of dimethyl carbonate by transesterification[J]. Catalysis Letters, 2017, 147: 2558-2569. |
21 | Zeng H Y, Xu S, Liao M C, et al. Activation of reconstructed Mg/Al hydrotalcites in the transesterification of microalgae oil[J]. Applied Clay Science, 2014, 91/92: 16-24. |
22 | Zhang L, Wu Y S, Bian X F, et al. Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys[J]. Journal of Non-Crystalline Solids, 2000, 262: 169-176. |
23 | Chang L H, Sasirekha N, Chen Y W, et al. Preferential oxidation of CO in H2 stream over Au/MnO2-CeO2 catalysts[J]. Industrial & Engineering Chemistry Research, 2006, 45(14): 4927-4935. |
24 | Zou Z Q, Meng M, Guo L H, et al. Synthesis and characterization of CuO/Ce1-xTixO2 catalysts used for low-temperature CO oxidation[J]. Journal of Hazardous Materials, 2009, 163(2/3): 835-842. |
25 | Zhan S H, Zhang H, Zhang Y, et al. Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(χ)-CeO2 at low temperatures[J]. Applied Catalysis B Environmental, 2017, 203: 199-209. |
26 | Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. |
27 | Lee S Y, Kim D H, Choi S C, et al. Porous multi-walled carbon nanotubes by using catalytic oxidation via transition metal oxide[J]. Microporous and Mesoporous Materials, 2014, 194: 46-51. |
28 | Sánchez G, Dlugogorski B Z, Kennedy E M, et al. Zeolite-supported iron catalysts for allyl alcohol synthesis from glycerol[J]. Applied Catalysis A General, 2016, 509: 130-142. |
29 | Gong J, Yao K, Liu J, et al. Striking influence of Fe2O3 on the “catalytic carbonization” of chlorinated poly(vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red[J]. Journal of Materials Chemistry A, 2013, 1(17): 5247-5255. |
30 | Hong W J, Iwamoto S J, Inoue M. Direct decomposition of NO on Ba catalysts supported on Ce-Fe mixed oxides[J]. Catalysis Letters, 2010, 135: 190-196. |
31 | Kumar P, Srivastava V C, Mishra I M. Synthesis and characterization of Ce-La oxides for the formation of dimethyl carbonate by transesterification of propylene carbonate[J]. Catalysis Communication, 2015, 60: 27-31. |
32 | Liao Y H, Li F, Dai X, et al. Solid base catalysts derived from Ca-M-Al(M=Mg, La, Ce, Y)layered double hydroxides for dimethyl carbonate synthesis by transesterification of methanol with propylene carbonate[J]. Chinese Journal of Catalysis, 2017, 38: 1860-1869. |
33 | Song Z W, Subramaniam B, Chaudhari R V. Kinetic study of CaO-catalyzed transesterification of cyclic carbonates with methanol[J]. Industrail & Engineering Chemistry Research, 2018, 57(44): 14977-14987. |
34 | Song Z W, Jin X, Hu Y F, et al. Intriguing catalyst(CaO) pretreatment effects and mechanistic insights during propylene carbonate transesterification with methanol[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4718-4729. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||