化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3428-3443.DOI: 10.11949/0438-1157.20200115
周柒1(),丁红蕾1,2,3(),郭得通1,潘卫国1,2,3(),杜威1
收稿日期:
2020-02-24
修回日期:
2020-04-18
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
丁红蕾,潘卫国
作者简介:
周柒(1996—),男,硕士研究生,基金资助:
Qi ZHOU1(),Honglei DING1,2,3(),Detong GUO1,Weiguo PAN1,2,3(),Wei DU1
Received:
2020-02-24
Revised:
2020-04-18
Online:
2020-08-05
Published:
2020-08-05
Contact:
Honglei DING,Weiguo PAN
摘要:
CO2的过量排放引发了严重的温室效应,采用CO2氢化技术在实现CO2减排的同时又可生成高价值的产物,因此受到研究人员的广泛关注。近年来,关于CO2氢化的研究逐渐增多,但是综合探讨多种催化技术的相关综述较少。本文将较为新型的CO2氢化技术大致分为光催化、电催化、生物催化以及等离子体催化4种。主要从催化剂的角度,对以上4种新型CO2氢化技术的研究现状和最新进展进行了归纳,并简要介绍了其反应机理。同时,基于研究现状的分析,指出了4种氢化技术的进一步研究方向和需要解决的相关问题,并对CO2氢化技术的发展作出了展望。
中图分类号:
周柒, 丁红蕾, 郭得通, 潘卫国, 杜威. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443.
Qi ZHOU, Honglei DING, Detong GUO, Weiguo PAN, Wei DU. Recent advances in catalytic methods of CO2 hydrogenation to clean energy[J]. CIESC Journal, 2020, 71(8): 3428-3443.
催化剂 | 主要产物 | 产率/(μmol/(g·h)) | 选择性/% | 文献 |
---|---|---|---|---|
Pd/Ce-TiO2 | CH4 | 73.5 | — | [ |
TiO2/Ti3C2 | CH4 | 4.4 | — | [ |
SCN-H-Ni-TiO2 | CH3CHO | 11.3 | — | [ |
Cu/plate ZnO/Al2O3 | CH3OH | — | 72.7 | [ |
Cu-g-C3N4-ZnO/Al2O3 | CH3OH | 5730.0 | — | [ |
Cu/ZnGa2O4–ZnO | CH3OH | — | 50.0 | [ |
Cu/ZnO | CH3OH | 127.8 | — | [ |
In2O3/ZrO2 | CH3OH | — | 100.0 | [ |
In2O3-WO3 | CH3OH | 496.0 | — | [ |
In2O3-x(OH)y | CH3OH | 60.0 | 50.0 | [ |
Cu3SnS4 | CH4 | 14.0 | 80.0 | [ |
CdV2O6 | CH4 | 1.0 | — | [ |
CdS/CdV2O6 | CH4 | 2.8 | — | [ |
2%Cd/ZnS:0.2%Cu | HCOOH | 3.2 | 99.0 | [ |
g-C3N4/(Cu/TiO2) | CH3OH | 429.0 | — | [ |
TiO2/rGO | CH4 | 49.0 | — | [ |
HCP-TiO2-FG | CH4 | 27.6 | 87.4 | [ |
表1 不同光催化剂的活性对比
Table 1 Comparison on activities of different photocatalysts
催化剂 | 主要产物 | 产率/(μmol/(g·h)) | 选择性/% | 文献 |
---|---|---|---|---|
Pd/Ce-TiO2 | CH4 | 73.5 | — | [ |
TiO2/Ti3C2 | CH4 | 4.4 | — | [ |
SCN-H-Ni-TiO2 | CH3CHO | 11.3 | — | [ |
Cu/plate ZnO/Al2O3 | CH3OH | — | 72.7 | [ |
Cu-g-C3N4-ZnO/Al2O3 | CH3OH | 5730.0 | — | [ |
Cu/ZnGa2O4–ZnO | CH3OH | — | 50.0 | [ |
Cu/ZnO | CH3OH | 127.8 | — | [ |
In2O3/ZrO2 | CH3OH | — | 100.0 | [ |
In2O3-WO3 | CH3OH | 496.0 | — | [ |
In2O3-x(OH)y | CH3OH | 60.0 | 50.0 | [ |
Cu3SnS4 | CH4 | 14.0 | 80.0 | [ |
CdV2O6 | CH4 | 1.0 | — | [ |
CdS/CdV2O6 | CH4 | 2.8 | — | [ |
2%Cd/ZnS:0.2%Cu | HCOOH | 3.2 | 99.0 | [ |
g-C3N4/(Cu/TiO2) | CH3OH | 429.0 | — | [ |
TiO2/rGO | CH4 | 49.0 | — | [ |
HCP-TiO2-FG | CH4 | 27.6 | 87.4 | [ |
催化剂 | 主要 产物 | 产率/ (μmol/(g ·h)) | 选择性/% | 文献 |
---|---|---|---|---|
MoO3-x | CH4 | 2.1 | — | [ |
Ru/Al2O3 | CH4 | — | 99.2 | [ |
Pd/Al2O3 | CH4 | — | 98.6 | [ |
Ni/Al2O3 | CH4 | — | 99.0 | [ |
CoFeAl-LDH-650 | CH4 | — | 60.6 | [ |
Ru@FL-LDHs | CH4 | 277000.0 | 99.3 | [ |
CA-LDO | CH3OH | — | 40.0 | [ |
CZA-LDO | CH3OH | — | 88.0 | [ |
表2 光热催化中催化剂活性对比
Table 2 Comparison of catalyst activity in photothermal catalysis
催化剂 | 主要 产物 | 产率/ (μmol/(g ·h)) | 选择性/% | 文献 |
---|---|---|---|---|
MoO3-x | CH4 | 2.1 | — | [ |
Ru/Al2O3 | CH4 | — | 99.2 | [ |
Pd/Al2O3 | CH4 | — | 98.6 | [ |
Ni/Al2O3 | CH4 | — | 99.0 | [ |
CoFeAl-LDH-650 | CH4 | — | 60.6 | [ |
Ru@FL-LDHs | CH4 | 277000.0 | 99.3 | [ |
CA-LDO | CH3OH | — | 40.0 | [ |
CZA-LDO | CH3OH | — | 88.0 | [ |
催化剂 | 主要产物 | 法拉第效率(FE)/% | 选择性/% | 过电位/V | 文献 |
---|---|---|---|---|---|
Cu/ZrO2 | CH3OH | — | 28.3 | — | [ |
Cu/TiO2 | CH3OH | — | 19.1 | — | [ |
K/Mn/Fe/NCNT | CO | — | 72.1 | — | [ |
Cu-ZrO2/CNFs | CH3OH | — | 67.0 | — | [ |
5% Ru/NCNF | CH4 | — | 99.0 | — | [ |
2b-AuNP | CO | 71 | — | 0.47 | [ |
SL-NG@Sn | formate | 92 | — | -1.00 | [ |
表3 不同电催化剂的活性对比
Table 3 Comparison of activities of different electrocatalysts
催化剂 | 主要产物 | 法拉第效率(FE)/% | 选择性/% | 过电位/V | 文献 |
---|---|---|---|---|---|
Cu/ZrO2 | CH3OH | — | 28.3 | — | [ |
Cu/TiO2 | CH3OH | — | 19.1 | — | [ |
K/Mn/Fe/NCNT | CO | — | 72.1 | — | [ |
Cu-ZrO2/CNFs | CH3OH | — | 67.0 | — | [ |
5% Ru/NCNF | CH4 | — | 99.0 | — | [ |
2b-AuNP | CO | 71 | — | 0.47 | [ |
SL-NG@Sn | formate | 92 | — | -1.00 | [ |
催化剂 | 主要 产物 | 产率 | TON | 文献 |
---|---|---|---|---|
50%-Pd@ICRM | HCOOH | — | 204 | [ |
Pd@ICRM | HCOOH | — | 250 | [ |
C. necator FdsABG | HCOOH | — | 1.9 | [ |
Mn2(bipy)2(CO)6-DBU | HCOOH | 98.0% | 6250 | [ |
D. desulfuricans | HCOOH | 14000.0 μmol/(g·h) | — | [ |
microbial-FeCl3 | HCOOH | 34.6 mg/(L·h) | — | [ |
PANi-ClFDH | HCOOH | 1.4 μmol/(h·cm2) | — | [ |
Fe(PNPH-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 1220 | [ |
Fe(PNPMe-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 9840 | [ |
Fe(PNPNMe-iPr)(H)2(CO) | HCOOH | >99.0% | 10000 | [ |
Mn(PNPNHiPr)(H)(CO)2 | HCOOH | 63.0% | 31600 | [ |
Ni(BF4)2/NP3 | HCOOH | — | 4650710 | [ |
表4 生物催化中不同酶活性对比
Table 4 Comparison of different enzyme activities in biocatalysis
催化剂 | 主要 产物 | 产率 | TON | 文献 |
---|---|---|---|---|
50%-Pd@ICRM | HCOOH | — | 204 | [ |
Pd@ICRM | HCOOH | — | 250 | [ |
C. necator FdsABG | HCOOH | — | 1.9 | [ |
Mn2(bipy)2(CO)6-DBU | HCOOH | 98.0% | 6250 | [ |
D. desulfuricans | HCOOH | 14000.0 μmol/(g·h) | — | [ |
microbial-FeCl3 | HCOOH | 34.6 mg/(L·h) | — | [ |
PANi-ClFDH | HCOOH | 1.4 μmol/(h·cm2) | — | [ |
Fe(PNPH-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 1220 | [ |
Fe(PNPMe-iPr)(H)(CO)(Br) | HCOOH | 98.0% | 9840 | [ |
Fe(PNPNMe-iPr)(H)2(CO) | HCOOH | >99.0% | 10000 | [ |
Mn(PNPNHiPr)(H)(CO)2 | HCOOH | 63.0% | 31600 | [ |
Ni(BF4)2/NP3 | HCOOH | — | 4650710 | [ |
类型 | 催化剂 | 主要产物 | 选择性/% | 能源效率/% | CO2转化率/% | 文献 |
---|---|---|---|---|---|---|
DBD | Mn/γ-Al2O3 | CO | 77.7 | 10.2 | [ | |
PbTiO3 | CH4 | 75 | — | 15.0 | [ | |
ZrO2 pellets | CO | 95 | 7.0 | 52.1 | [ | |
Ni/Al2O3-60% Ar | CH4 | 7.6 | 2.2 | 56.1 | [ | |
Pd/ZnO | CH4; CO | — | — | 32.5 | [ | |
GA | N2:10%→95% | CO | — | 12.0 | 12.7 | [ |
MW | NiO/TiO2(Ar-P) | CO | — | 18.0 | 43.0 | [ |
(20000 Pa) | CO | — | 23.0 | 38.0 | [ | |
(H2∶CO2 = 1) | CO | 100 | — | 60.0 | [ | |
(H2∶CO2 = 3) | CO | 6 | 80 | [ | ||
RF | pure CO2 | CO | — | — | 66.0 | [ |
25% H2 | CO | — | — | 21.6 | [ | |
91% H2 | CO | — | — | 65.2 | [ |
表5 等离子体催化中不同催化剂活性对比
Table 5 Comparison of different catalyst activities in plasma catalysis
类型 | 催化剂 | 主要产物 | 选择性/% | 能源效率/% | CO2转化率/% | 文献 |
---|---|---|---|---|---|---|
DBD | Mn/γ-Al2O3 | CO | 77.7 | 10.2 | [ | |
PbTiO3 | CH4 | 75 | — | 15.0 | [ | |
ZrO2 pellets | CO | 95 | 7.0 | 52.1 | [ | |
Ni/Al2O3-60% Ar | CH4 | 7.6 | 2.2 | 56.1 | [ | |
Pd/ZnO | CH4; CO | — | — | 32.5 | [ | |
GA | N2:10%→95% | CO | — | 12.0 | 12.7 | [ |
MW | NiO/TiO2(Ar-P) | CO | — | 18.0 | 43.0 | [ |
(20000 Pa) | CO | — | 23.0 | 38.0 | [ | |
(H2∶CO2 = 1) | CO | 100 | — | 60.0 | [ | |
(H2∶CO2 = 3) | CO | 6 | 80 | [ | ||
RF | pure CO2 | CO | — | — | 66.0 | [ |
25% H2 | CO | — | — | 21.6 | [ | |
91% H2 | CO | — | — | 65.2 | [ |
1 | Li S, Guo L, Ishihara T. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst[J]. Catalysis Today, 2020, 339: 352-361. |
2 | Sgouridis S, Carbajales-Dale M, Csala D, et al. Comparative net energy analysis of renewable electricity and carbon capture and storage [J]. Nat. Energy, 2019, 4(6): 456-465. |
3 | Mac Dowell N, Fennell P S, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change [J]. Nat. Clim. Change, 2017, 7(4): 243-249. |
4 | Wang L, Yi Y, Guo H, et al. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2 [J]. ACS Catalysis, 2017, 8(1): 90-100. |
5 | Snoeckx R, Bogaerts A. Plasma technology — a novel solution for CO2 conversion? [J]. Chem. Soc. Rev., 2017, 46(19): 5805-5863. |
6 | Rahmatmand B, Rahimpour M R, Keshavarz P. Introducing a novel process to enhance the syngas conversion to methanol over Cu/ZnO/Al2O3 catalyst[J]. Fuel Processing Technology, 2019, 193: 159-179. |
7 | Sperling D. Beyond oil and gas: the methanol economy [J]. Energ. J., 2007, 28(1): 178-189. |
8 | Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review[J]. Applied Surface Science, 2017, 392: 658-686. |
9 | 曹晨熙, 陈天元, 丁晓旭, 等. 负载型铟基催化剂二氧化碳加氢动力学研究[J]. 化工学报, 2019, 70(10): 3985-3993. |
Cao C X, Chen T Y, Ding X X, et al. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation [J]. CIESC Journal, 2019, 70(10): 3985-3993. | |
10 | Li N X, Zou X Y, Liu M, et al. Enhanced visible light photocatalytic hydrogenation of CO2 into methane over a Pd/Ce-TiO2 nanocomposition [J]. The Journal of Physical Chemistry C, 2017, 121(46): 25795-25804. |
11 | Yan Y B, Yu Y L, Huang S L, et al. Adjustment and matching of energy band of TiO2-based photocatalysts by metal ions (Pd, Cu, Mn) for photoreduction of CO2 into CH4 [J]. J. Phys. Chem. C, 2017, 121(2): 1089-1098. |
12 | Tahir M, Tahir B. Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts [J]. Applied Surface Science, 2016, 377: 244-252 |
13 | Butburee T, Sun Z, Centeno A, et al. Improved CO2 photocatalytic reduction using a novel 3-component heterojunction[J]. Nano Energy, 2019, 62: 426-433. |
14 | Low J X, Zhang L Y, Tong T, et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity [J]. Journal of Catalysis, 2018, 361: 255-266. |
15 | Xu Y J, Wang S, Yang J, et al. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels [J]. Nano Energy, 2018, 51: 442-450. |
16 | Zhang X F, Liu Y, Dong S L, et al. One-step hydrothermal synthesis of a TiO2-Ti3C2Tx nanocomposite with small sized TiO2 nanoparticles[J]. Ceramics International, 2017, 43(14): 11065-11070. |
17 | Xu F Y, Zhang J J, Zhu B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction [J]. Appl. Catal. B-Environ., 2018, 230: 194-202. |
18 | Rambabu Y, Kumar U, Singhal N, et al. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes [J]. Applied Surface Science, 2019, 485: 48-55. |
19 | Fu F Y, Shown I, Li C S, et al. KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction [J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25186-25194. |
20 | Ye J, He J H, Wang S, et al. Nickel-loaded black TiO2 with inverse opal structure for photocatalytic reduction of CO2 under visible light [J]. Separation and Purification Technology, 2019, 220: 8-15. |
21 | Zhao J, Li Y X, Zhu Y Q, et al. Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: role of metallic Cu [J]. Appl. Catal. A-Gen., 2016, 510: 34-41. |
22 | Liao F, Huang Y, Ge J, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials interface in selective hydrogenation of CO2 to CH3OH [J]. Angewandte Chemie, 2011, 50(9): 2162-2175. |
23 | Deng K, Hu B, Lu Q, et al. Cu/g-C3N4 modified ZnO/Al2O3 catalyst: methanol yield improvement of CO2 hydrogenation [J]. Catalysis Communications, 2017, 100: 81-84. |
24 | Li M M J, Zeng Z Y, Liao F L, et al. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts [J]. Journal of Catalysis, 2016, 343: 157-167. |
25 | Wang Z J, Song H, Pang H, et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts [J]. Appl. Catal. B-Environ., 2019, 250: 10-16. |
26 | Martin O, Martin A J, Mandelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation [J]. Angewandte Chemie, 2016, 55(21): 6261-6265. |
27 | Gondal M A, Dastageer M A, Oloore L E, et al. Laser induced selective photo-catalytic reduction of CO2 into methanol using In2O3-WO3 nano-composite [J]. J. Photoch. Photobio. A, 2017, 343: 40-50. |
28 | Guan J R, Wang H Q, Lu J Z, et al. Enhanced photocatalytic reduction of CO2 by fabricating In2O3/CeO2/HATP hybrid multi-junction photocatalyst [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 93-103. |
29 | Pan Y X, You Y, Xin S, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts [J]. Journal of the American Chemical Society, 2017, 139(11): 4123-4129. |
30 | Wang L, Ghoussoub M, Wang H, et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure [J]. Joule, 2018, 2(7): 1369-1381. |
31 | Sharma N, Das T, Kumar S, et al. Photocatalytic activation and reduction of CO2 to CH4 over single phase nano Cu3SnS4: a combined experimental and theoretical study [J]. ACS Applied Energy Materials, 2019, 2(8): 5677-5685. |
32 | Li P, Hou C C, Zhang X H, et al. Ethylenediamine-functionalized CdS/tetra(4-carboxyphenyl) porphyrin iron (III) chloride hybrid system for enhanced CO2 photoreduction [J]. Applied Surface Science, 2018, 459: 292-299. |
33 | Kandy M M, Gaikar V G. Enhanced photocatalytic reduction of CO2 using CdS/Mn2O3 nanocomposite photocatalysts on porous anodic alumina support with solar concentrators [J]. Renew. Energ., 2019, 139: 915-923. |
34 | Jin J, Yu J G, Guo D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity [J]. Small, 2015, 11(39): 5262-5271. |
35 | Wei Z H, Wang Y F, Li Y Y, et al. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets [J]. Journal of CO2 Utilization, 2018, 28: 15-25. |
36 | Li Y Y, Wei Z H, Fan J B, et al. Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS [J]. Applied Surface Science, 2019, 483: 442-452. |
37 | Ijaz S, Ehsan M F, Ashiq M N, et al. Flower-like CdS/CdV2O6 composite for visible-light photoconversion of CO2 into CH4 [J]. Materials & Design, 2016, 107: 178-186. |
38 | Baran T, Wojtyla S, Dibenedetto A, et al. Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2 [J]. Appl. Catal. B-Environ., 2015, 178: 170-176. |
39 | Meng X G, Zuo G F, Zong P X, et al. A rapidly room-temperature-synthesized Cd/ZnS: Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction [J]. Appl. Catal. B-Environ., 2018, 237: 68-73. |
40 | Primo A, He J B, Jurca B, et al. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene [J]. Appl. Catal. B-Environ., 2019, 245: 351-359. |
41 | Akple M S, Low J, Wageh S, et al. Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures [J]. Applied Surface Science, 2015, 358: 196-203. |
42 | Tian N, Zhang Y H, Li X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution [J]. Nano Energy, 2017, 38: 72-81. |
43 | Mondelli C, Puertolas B, Ackermann M, et al. Enhanced base-free formic acid production from CO2 on Pd/g-C3N4 by tuning of the carrier defects [J]. ChemSusChem, 2018, 11(17): 2859-2869. |
44 | Adekoya D O, Tahir M, Amin N A S. g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light [J]. Journal of CO2 Utilization, 2017, 18: 261-274. |
45 | Wang Y L, Tian Y, Yan L K, et al. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction [J]. J. Phys. Chem. C, 2018, 122(14): 7712-7719. |
46 | Wang F, Ye Y H, Cao Y H, et al. The favorable surface properties of heptazine based g-C3N4 (001) in promoting the catalytic performance towards CO2 conversion [J]. Applied Surface Science, 2019, 481: 604-610. |
47 | Low J, Yu J, Ho W. Graphene-based photocatalysts for CO2 reduction to solar fuel [J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4244-4251. |
48 | Ahmed G, Raziq F, Hanif M, et al. Oxygen-cluster-modified anatase with graphene leads to efficient and recyclable photo-catalytic conversion of CO2 to CH4 supported by the positron annihilation study[J]. Scientific Reports, 2019, 9(1): 1-8. |
49 | Wang S L, Xu M, Peng T Y, et al. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion [J]. Nat. Commun, 2019, 10(1): 676. |
50 | Hou S L, Dong J, Zhao B. Formation of C—X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks[J]. Advanced Materials, 2020, 32(3): 1806163. |
51 | Ye J Y, Johnson J K. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(5): 2921-2928. |
52 | Jia J, brien P G O, He L, et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5 [J]. Advanced Science, 2016, 3(10): 1600189. |
53 | Chen G, Gao R, Zhao Y, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J]. Advanced Materials, 2018, 30(3): 1704663. |
54 | Li J, Ye Y H, Ye L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x [J]. J. Mater. Chem. A, 2019, 7(6): 2821-2830. |
55 | Wang L, Liu X X, Dang Y L, et al. Enhanced solar induced photo-thermal synergistic catalytic CO2 conversion by photothermal material decorated TiO2 [J]. Solid. State. Sci., 2019, 89: 67-73. |
56 | Meng X, Wang T, Liu L, et al. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production [J]. Angewandte Chemie, 2014, 53(43): 11478-11482. |
57 | Ren J, Ouyang S, Xu H, et al. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system[J]. Advanced Energy Materials, 2017, 7(5): 1601657. |
58 | Zhao F G, Fan L L, Xu K J, et al. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol[J]. Journal of CO2 Utilization, 2019, 33: 222-232. |
59 | Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. |
60 |
Hjorth I, Nord M, Nning M R, et al. Electrochemical reduction of CO2 to synthesis gas on CNT supported CuxZn1-xO catalysts[J]. Catalysis Today, 2019, DOI: 10.1016/j.cattod.2019.02.045.
DOI URL |
61 | Nielsen D U, Hu X M, Daasbjerg K, et al. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis, 2018, 1(4): 244-254. |
62 | Zhu S, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. Journal of the American Chemical Society, 2017, 139(44): 15664-15667. |
63 | Luo W, Nie X, Janik M J, et al. Facet dependence of CO2 reduction paths on Cu electrodes [J]. ACS Catalysis, 2015, 6(1): 219-229. |
64 | Perez-Gallent E, Figueiredo M C, Calle-Vallejo F, et al. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes [J]. Angewandte Chemie, 2017, 56(13): 3621-3624. |
65 | Jiao Y, Zheng Y, Chen P, et al. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol[J]. Journal of the American Chemical Society, 2017, 139(49): 18093-18100. |
66 | Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns [J]. Journal of the American Chemical Society, 2017, 139(1): 47-50. |
67 | Kattel S, Yan B, Yang Y, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper [J]. Journal of the American Chemical Society, 2016, 138(38): 12440-12450. |
68 | Ning H, Wang X, Wang W, et al. Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4 [J]. Carbon, 2019, 146: 218-223. |
69 | Nolan M. Adsorption of CO2 on heterostructures of Bi2O3 nanocluster-modified TiO2 and the role of reduction in promoting CO2 activation [J]. ACS Omega., 2018, 3(10): 13117-13128. |
70 | Zhai L N, Cui C N, Zhao Y T, et al. Titania-modified silver electrocatalyst for selective CO2 reduction to CH3OH and CH4 from DFT study [J]. J. Phys. Chem. C, 2017, 121(30): 16275-16282. |
71 | Yang X F, Kattel S, Senanayake S D, et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface [J]. Journal of the American Chemical Society, 2015, 137(32): 10104-10107. |
72 | Kangvansura P, Chew L M, Kongmark C, et al. Effects of potassium and manganese promoters on nitrogen-doped carbon nanotube-supported iron catalysts for CO2 hydrogenation [J]. Engineering, 2017, 3(3): 385-392. |
73 | Castelo-Quibén J, Bailón-García E, Pérez-Fernández F J, et al. Mesoporous carbon nanospheres with improved conductivity for electro-catalytic reduction of O2 and CO2[J]. Carbon, 2019, 155: 88-99. |
74 | Wang W, Chu W, Wang N, et al. Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation [J]. International Journal of Hydrogen Energy, 2016, 41(2): 967-975. |
75 | Li J, Zhou Y, Xiao X, et al. Regulation of Ni-CNT interaction on Mn-promoted nickel nanocatalysts supported on oxygenated CNTs for CO2 selective hydrogenation [J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41224-41236. |
76 | Nguyen L T M, Park H, Banu M, et al. Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts [J]. RSC Adv., 2015, 5(128): 105560. |
77 | Din I U, Shaharun M S, Naeem A, et al. Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol [J]. Journal of CO2 Utilization, 2017, 21: 145-155. |
78 | Roldan L, Marco Y, Garcia-Bordeje E. Origin of the excellent performance of Ru on nitrogen-doped carbon nanofibers for CO2 hydrogenation to CH4 [J]. ChemSusChem., 2017, 10(6): 1139-1144. |
79 | Castelo-Quibén J, Elmouwahidi A, Maldonado-Hódar F, et al. Metal-carbon-CNF composites obtained by catalytic pyrolysis of urban plastic residues as electro-catalysts for the reduction of CO2 [J]. Catalysts, 2018, 8(5): 198-209. |
80 | Díaz J A, Romero A, García-Minguillán A M, et al. Carbon nanofibers and nanospheres-supported bimetallic (Co and Fe) catalysts for the Fischer–Tropsch synthesis [J]. Fuel Processing Technology, 2015, 138: 455-462. |
81 | Zhang C H, Yang S Z, Wu J J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene [J]. Advanced Energy Materials, 2018, 8(19): 1703487. |
82 | Rogers C, Perkins W S, Veber G, et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes [J]. Journal of the American Chemical Society, 2017, 139(11): 4052-4061. |
83 | Huang J, Guo X, Wei Y, et al. A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction [J]. Journal of CO2 Utilization, 2019, 33: 166-170. |
84 | Han P, Yu X, Yuan D, et al. Defective graphene for electrocatalytic CO2 reduction [J]. Journal of Colloid and Interface Science, 2019, 534: 332-357. |
85 | Wu J J, Liu M J, Sharma P P, et al. Incorporation of nitrogen defects for efficient reduction of CO2via two-electron pathway on three-dimensional graphene foam [J]. Nano Letters, 2016, 16(1): 466-470. |
86 | Bhatia S K, Bhatia R K, Jeon J M, et al. Carbon dioxide capture and bioenergy production using biological system—a review [J]. Renew. Sust. Energ. Rev., 2019, 110: 143-158. |
87 | Wang Y Z, Li M F, Zhao Z P, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions [J]. J. Mol. Catal. B-Enzym., 2015, 116: 89-94. |
88 | Lee L C, Xing X, Zhao Y. Environmental engineering of Pd nanoparticle catalysts for catalytic hydrogenation of CO2 and bicarbonate [J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38436-38344. |
89 | Nielsen C F, Lange L, Meyer A S. Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization [J]. Biotechnology Advances, 2019, 37(7): 107408. |
90 | Yu X. Conversion of carbon dioxide to formate by a formate dehydrogenase from Cupriavidus necator[D/OL]. UC Riverside, 2018. https: //escholarship.org/uc/item/1vn4h6xj. |
91 | Shiekh B A, Kaur D, Kumar S. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO2/dehydrogenation of HCOOH inspired by the active site of formate dehydrogenase [J]. Phys. Chem. Chem. Phys., 2019, 21(38): 21370-21380. |
92 | Piazzetta P, Marino T, Russo N, et al. Direct hydrogenation of carbon dioxide by an artificial reductase obtained by substituting rhodium for zinc in the carbonic anhydrase catalytic center. A mechanistic study [J]. ACS Catalysis, 2015, 5(9): 5397-5409. |
93 | Chen X, Yang X. Bioinspired design and computational prediction of iron complexes with pendant amines for the production of methanol from CO2 and H2 [J]. The Journal of Physical Chemistry Letters, 2016, 7(6): 1035-1041. |
94 | Dubey A, Nencini L, Fayzullin R R, et al. Bio-inspired Mn(I) complexes for the hydrogenation of CO2 to formate and formamide [J]. ACS Catalysis, 2017, 7(6): 3864-3868. |
95 | Yang L, Wang H, Zhang N, et al. The reduction of carbon dioxide in iron biocatalyst catalytic hydrogenation reaction: a theoretical study [J]. Dalton Transactions, 2013, 42(31): 11186-11193. |
96 | Mourato C, Martins M, Da Silva S M, et al. A continuous system for biocatalytic hydrogenation of CO2 to formate [J]. Bioresource Technology, 2017, 235: 149-156. |
97 | Blanchet E, Vahlas Z, Etcheverry L, et al. Coupled iron-microbial catalysis for CO2 hydrogenation with multispecies microbial communities [J]. Chemical Engineering Journal, 2018, 346: 307-316. |
98 | Roger M, Brown F, Gabrielli W, et al. Efficient hydrogen- dependent carbon dioxide reduction by Escherichia coli [J]. Curr. Biol., 2018, 28(1): 140-145. |
99 | Luo J, Meyer A S, Mateiu R V, et al. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol [J]. New Biotechnology, 2015, 32(3): 319-327. |
100 | Schlager S, Fuchsbauer A, Haberbauer M, et al. Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes [J]. J. Mater. Chem. A, 2017, 5(6): 2429-2443. |
101 | Kuk S K, Gopinath K, Singh R K, et al. NADH-free electroenzymatic reduction of CO2 by conductive hydrogel-conjugated formate dehydrogenase [J]. ACS Catalysis, 2019, 9(6): 5584-5589. |
102 | Jang J, Jeon B W, Kim Y H. Bioelectrochemical conversion of CO2 to value added product formate using engineered Methylobacterium extorquens[J]. Scientific Reports, 2018, 8(1): 1-7. |
103 | Bertini F, Gorgas N, Stöger B, et al. Efficient and mild carbon dioxide hydrogenation to formate catalyzed by Fe (II) hydrido carbonyl complexes bearing 2, 6-(diaminopyridyl) diphosphine pincer ligands[J]. ACS Catalysis, 2016, 6(5): 2889-2893. |
104 | Bertini F, Glatz M, Gorgas N, et al. Carbon dioxide hydrogenation catalysed by well-defined Mn (I) PNP pincer hydride complexes[J]. Chemical Science, 2017, 8(7): 5024-5029. |
105 | Schieweck B G, Westhues N F, Klankermayer J. A highly active non-precious transition metal catalyst for the hydrogenation of carbon dioxide to formates[J]. Chemical Science, 2019, 10(26): 6519-6523. |
106 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
Liu C J, Guo Q T, Ye J Y, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
107 | Zhao T, Ullah N, Hui Y, et al. Review of plasma-assisted reactions and potential applications for modification of metal-organic frameworks [J]. Frontiers of Chemical Science and Engineering, 2019, 13(3): 444-457. |
108 | 郭得通, 丁红蕾, 潘卫国, 等. CO2催化转化的研究现状及趋势[J]. 中国电机工程学报, 2019, 39(24): 7242-7252+7497. |
Guo D T, Ding H L, Pan W G, et al. Recent advances in catalyzed conversion and utilization of CO2 [J]. Proceedings of the CSEE, 2019, 39(24): 7242-7252+7497. | |
109 | Zeng Y, Tu X. Plasma-catalytic CO2 hydrogenation at low temperatures[J]. IEEE Transactions on Plasma Science, 2016, 44(4): 405-411. |
110 | Chen H, Mu Y, Shao Y, et al. Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation[J]. AIChE Journal, 2020, 66(4): e16853. |
111 | Parastaev A, Hoeben W F L M, van Heesch B E J M, et al. Temperature-programmed plasma surface reaction: an approach to determine plasma-catalytic performance [J]. Applied Catalysis B: Environmental, 2018, 239: 168-177. |
112 | De Bie C, van Dijk J, Bogaerts A. CO2 hydrogenation in a dielectric barrier discharge plasma revealed [J]. The Journal of Physical Chemistry C, 2016, 120(44): 25210-25224. |
113 | Aerts R, Somers W, Bogaerts A. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study [J]. ChemSusChem, 2015, 8(4): 702-716. |
114 | Zhou A, Chen D, Ma C, et al. DBD plasma-ZrO2 catalytic decomposition of CO2 at low temperatures [J]. Catalysts, 2018, 8(7): 256-267. |
115 | Amouroux J, Cavadias S. Electrocatalytic reduction of carbon dioxide under plasma DBD process[J]. Journal of Physics D: Applied Physics, 2017, 50(46): 465501. |
116 | Ray D, Saha R. DBD plasma assisted CO2 decomposition: influence of diluent gases[J]. Catalysts, 2017, 7(9): 244-255. |
117 | Zeng Y, Tu X. Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: effect of argon addition[J]. Journal of Physics D: Applied Physics, 2017, 50(18): 184004. |
118 | Li J, Sun Y, Wang B, et al. Effect of plasma on catalytic conversion of CO2 with hydrogen over Pd/ZnO in a dielectric barrier discharge reactor [J]. Journal of Physics D: Applied Physics, 2019, 52(24): 244001. |
119 | Zhou R, Rui N, Fan Z, et al. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation [J]. International Journal of Hydrogen Energy, 2016, 41(47): 22017-22025. |
120 | Heijkers S, Bogaerts A. CO2 conversion in a gliding arc plasmatron: elucidating the chemistry through kinetic modeling [J]. The Journal of Physical Chemistry C, 2017, 121(41): 22644. |
121 | Zhang H, Li L, Li X D, et al. Warm plasma activation of CO2 in a rotating gliding arc discharge reactor [J]. Journal of CO2 Utilization, 2018, 27: 472-479. |
122 | Li L, Zhang H, Li X D, et al. Plasma-assisted CO2 conversion in a gliding arc discharge: improving performance by optimizing the reactor design [J]. Journal of CO2 Utilization, 2019, 29: 296-303. |
123 | Liu J B, Li X S, Liu J L, et al. Insight into gliding arc (GA) plasma reduction of CO2 with H2: GA characteristics and reaction mechanism[J]. Journal of Physics D: Applied Physics, 2019, 52(28): 284001. |
124 | Ananthanarasimhan J, Rao L, Shivapuji A M, et al. Characterization and applications of non-magnetic rotating gliding arc reactors—a brief review[J]. Frontiers in Advanced Materials Research, 2019, 1(1): 31-38. |
125 | Chen G, Britun N, Godfroid T, et al. An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis [J]. Journal of Physics D: Applied Physics, 2017, 50(8): 084001. |
126 | Chen G, Britun N, Godfroid T, et al. Role of plasma catalysis in the microwave plasma‐assisted conversion of CO2 [M]//Green Chemical Processing and Synthesis. Intech, 2017. |
127 | Belov I, VermeIiren V, Paulussen S, et al. Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations [J]. Journal of CO2 Utilization, 2018, 24: 386-397. |
128 | De La Fuente J F, Moreno S H, Stankiewicz A I, et al. Reduction of CO2 with hydrogen in a non-equilibrium microwave plasma reactor [J]. International Journal of Hydrogen Energy, 2016, 41(46): 21067-21077. |
129 | De La Fuente J F, Moreno S H, Stankiewicz A I, et al. On the improvement of chemical conversion in a surface-wave microwave plasma reactor for CO2 reduction with hydrogen (the reverse water-gas shift reaction) [J]. International Journal of Hydrogen Energy, 2017, 42(18): 12943-12955. |
130 | Yang R L, Zhang D Y, Zhu K W, et al. In situ study of the conversion reaction of CO2 and CO2-H2 mixtures in radio frequency discharge plasma[J]. Acta Physico-Chimica Sinica, 2019, 35(3): 292-298. |
131 | Huang Q, Zhang D, Wang D, et al. Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma [J]. Journal of Physics D: Applied Physics, 2017, 50(29): 294001. |
[1] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[2] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[6] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[7] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[8] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[9] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[10] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[11] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[12] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[13] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[14] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[15] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||