化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 149-157.DOI: 10.11949/0438-1157.20191080
收稿日期:
2019-10-07
修回日期:
2019-11-07
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
李鑫郡
作者简介:
李鑫郡(1988—),男,博士,讲师,基金资助:
Xinjun LI(),Weiwei CHEN,Shihua LU
Received:
2019-10-07
Revised:
2019-11-07
Online:
2020-04-25
Published:
2020-04-25
Contact:
Xinjun LI
摘要:
利用激光多普勒测振仪分别测定攻角和横流速度对压电风扇振幅的影响。基于相应的振动测试结果利用动网格技术对横流环境中不同安装角度下压电风扇冷却加热壁面的三维非定常流动和传热特性进行了数值模拟,同时应用红外热像仪对相同横流条件工况下加热表面的局部对流传热系数分布进行了测量。研究结果显示,攻角为90°时,作用在风扇上的气动载荷最小,风扇振幅最大,而随着攻角的减小风扇振幅也逐渐减小;安装角为90°时,压电风扇振动以及横流作用所诱导形成的耦合涡结构冲击加热表面,并在下游区域具有明显的脱落、破碎过程,对于叶尖包络区对应的壁面局部对流换热有显著的强化作用,此时风扇耦合换热性能最强,高于45°和135° 2倍以上;且时均对流传热系数的实验结果与数值模拟具有良好的一致性。
中图分类号:
李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
Xinjun LI, Weiwei CHEN, Shihua LU. Coupled flow and heat transfer characteristics of piezoelectric fan with cross flow[J]. CIESC Journal, 2020, 71(S1): 149-157.
uCF /(m·s-1) | p1×10-6 | p2×10-4 | p3×10-3 | p4×10-2 | p5×10-2 |
---|---|---|---|---|---|
0 | -1.886 | 2.447 | -7.31 | 6.078 | -5.092 |
6.00 | -1.152 | 1.606 | -5.211 | 4.935 | -5.941 |
10.00 | -0.5636 | 8.272 | -2.868 | 2.969 | -4.246 |
表1 多项式相关系数
Table 1 Relevant coefficients of this polynomial
uCF /(m·s-1) | p1×10-6 | p2×10-4 | p3×10-3 | p4×10-2 | p5×10-2 |
---|---|---|---|---|---|
0 | -1.886 | 2.447 | -7.31 | 6.078 | -5.092 |
6.00 | -1.152 | 1.606 | -5.211 | 4.935 | -5.941 |
10.00 | -0.5636 | 8.272 | -2.868 | 2.969 | -4.246 |
1 | Yoo J H, Hong J I, Cao W. Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices [J]. Sensors Actuators A, 2000, 79(1): 8-12. |
2 | Wo T, Ro P I, Kingon A I, et al. Piezoelectric resonating structures for microelectronic cooling [J]. Smart Materials and Structures, 2003, 12(2): 181-187. |
3 | Sydney M W, Basak S, Garimella S V, et al. Piezoelectric fans using higher flexural models for electronics cooling applications [J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(1): 119-128. |
4 | Kim Y H, Wereley S T, Chun C H. Phase-resolved flow field produced by a vibrating cantilever plate between two endplates [J]. Physics in Fluids, 2004, 16(1): 145-162. |
5 | Kimber M, Suzuki K, Kitsunai N, et al. Pressure and flow rate performance of piezoelectric fans [J]. IEEE Transaction on Components and Packaging Technologies, 2009, 32: 766-775. |
6 | Choi M, Cierpka C, Kim Y H. Vortex formation by a vibrating cantilever [J]. Journal of Fluids and Structures, 2012, 31: 67-78. |
7 | Aciklain T, Wait S M, Garimella S V. Experimental investigation of the thermal performance of piezoelectric fans [J]. Heat Transfer Engineering, 2004, 25(1): 4-14. |
8 | Liu S F, Huang R T, Sheu W J, et al. Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement [J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2565-2570. |
9 | Fairuz Z M, Sufian S F, Abdullah M Z, et al. Effect of piezoelectric fan mode shape on the heat transfer characteristics [J]. International Communications in Heat and Mass Transfer, 2014, 52: 140-151. |
10 | Lin C N. Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan [J]. International Journal of Heat and Mass Transfer, 2012, 55: 3043-3053. |
11 | 谭蕾,谭晓茗,张靖周. 压电风扇激励非定常流动和换热特性数值研究[J]. 航空学报,2013, 34(6): 1277-1284. |
Tan L, Tan X M, Zhang J Z. Numerical investigation on unsteady flow and heat transfer characteristics of piezoelectric fan [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1277-1284. | |
12 | Li X J, Zhang J Z, Tan X M. An investigation on convective heat transfer performance around piezoelectric fan vibration envelope in a forced channel flow [J]. International Journal of Heat and Mass Transfer, 2018, 126: 48-65. |
13 | Li X J, Zhang J Z, Tan X M. Convective heat transfer on a flat surface induced by a vertically oriented piezoelectric fan in the presence of cross flow [J]. Heat Mass Transfer, 2017, 53: 2745-2768. |
14 | 孔岳,李敏,吴蒙蒙. 压电风扇非定常流场速度分布的数值研究[J]. 工程力学,2016, 33(1): 209-216. |
Kong Y, Li M, Wu M M. Numerical investigation on the velocity of unsteady flow field induced by piezoelectric fan [J]. Engineering Mechanics, 2016, 33(1): 209-216. | |
15 | 孔岳,李敏,辛庆利. 压电风扇结构设计与参数影响研究[J]. 北京航空航天大学学报,2016, 42(9): 1977-1985. |
Kong Y, Li M, Xin Q L. Structure design of piezoelectric fans and research on influence of parameters [J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1977-1985. | |
16 | Choi M, Cierpka C, Kim Y. Effects of the distance between a vibrating cantilever pair [J]. European Journal of Mechanics - B/Fluids, 2014, 43: 154-165. |
17 | Choi M, Lee S, Kim Y. On the flow around a vibrating cantilever pair with different phase angles [J]. European Journal of Mechanics - B/Fluids, 2012, 34: 146-157. |
18 | Sufian S F, Abdullah M Z, Mohamed J J. Effect of synchronized piezoelectric fans on microelectronic cooling performance [J]. International Communications in Heat and Mass Transfer, 2013, 43: 81-89. |
19 | Sufian S F, Fairuz Z M, Zubair M, et al. Thermal analysis of dual piezoelectric fans for cooling multi-LED [J]. Microelectrics Reliability, 2014, 54: 1534-1543. |
20 | Li H Y, Chao S H, Chen J W, et al. Thermal performance of plate-fin heat sinks with piezoelectric cooling fan [J]. International Journal of Heat and Mass Transfer, 2013, 57: 722-732. |
21 | Gilson G M, Pickering S J, Hann D B, et al. Piezoelectric fan cooling: a novel high reliability electric machine thermal management solution [J]. IEEE Transactions on Industrial Electronics, 2013, 60: 4841-4851. |
22 | Ma S L, Chen J W, Li H Y, et al. Mechanism of enhancement of heat transfer for plate-fin heat sinks with dual piezoelectric fans [J]. International Journal of Heat and Mass Transfer, 2015, 90: 454-465. |
23 | Ma H K, Su H C, Liu C L. Investigation of a piezoelectric fan embedded in a heat sink [J]. International Communications in Heat and Mass Transfer, 2012, 39: 603-609. |
24 | Ma H K, Liu C L, Su H C, et al. Study of a cooling system with a piezoelectric fan [C]// 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). San Jose, CA, USA, 2012: 243-248. |
25 | Abdullah M K, Ismail N C, Abdullah M Z, et al. Effects of tip gap and amplitude of piezoelectric fans on the performance of heat sinks in microelectronic cooling [J]. Heat and Mass Transfer, 2012, 48: 893-901. |
26 | Sufian S F, Abdullah M Z. Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink [J]. Microelectronics Reliability, 2017, 68: 39-50. |
27 | Abdullah M K, Ismail N C, Mujeebu M A, et al. Optimum tip gap and orientation of multi-piezofan for heat transfer enhancement of finned heat sink in microelectronic cooling [J]. International Journal of Heat and Mass Transfer, 2012, 55: 5514-5525. |
28 | Kimber M, Garimella S V, Raman A. Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers [J]. ASME J. Heat Transfer, 2007, 123: 1168-1176. |
29 | Lin C N. Enhanced heat transfer performance of cylindrical surface by piezoelectric fan under forced convection conditions [J]. International Journal of Heat and Mass Transfer, 2013, 60: 296-308. |
30 | Brevet P, Dejeu C, Dorignac E, et al. Heat transfer to a row of impinging jets in consideration of optimization [J]. International Journal of Heat and Mass Transfer, 2002, 45(20): 4191-4200. |
31 | Moffat R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1998, 1(1): 3-17. |
32 | Jeong J, Hussain F. On the definition of a vortex [J]. Journal of Fluid Mechanics, 1995, 285(1): 69-94. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[9] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 595
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||