1 |
田恬. 密集颗粒物料流动特性数值模拟研究[D]. 北京: 中国科学院大学, 2017.
|
|
Tian T. Numerical investigation of the flow behavior of dense granular materials[D]. Beijing: University of Chinese Academy of Sciences, 2017.
|
2 |
Pallarès D, Johnsson F. A novel technique for particle tracking in cold 2-dimensional fluidized beds—simulating fuel dispersion[J]. Chemical Engineering Science, 2006, 61(8): 2710-2720.
|
3 |
Sette E, Pallarès D, Johnsson F, et al. Magnetic tracer-particle tracking in a fluid dynamically down-scaled bubbling fluidized bed[J]. Fuel Processing Technology, 2015, 138: 368-377.
|
4 |
Boelhouwer J G, Pipers H W, Drinkenburg A A H. Nature and characteristics of pulsing flow in trickle-bed reactors[J]. Chemical Engineering Science, 2002, 57(22/23): 4865-4876.
|
5 |
White D J, Take W A, Bolton M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
|
6 |
Slominski C, Niedostatkiewicz M, Tejchman J. Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow[J]. Powder Technology, 2007, 173(1): 1-18.
|
7 |
Zhao T, Eda T, Achyut S, et al. Investigation of pulsing flow regime transition and pulse characteristics in trickle-bed reactor by electrical resistance tomography[J]. Chemical Engineering Science, 2015, 130: 8-17.
|
8 |
Kou B, Cao Y, Xia C, et al. Granular materials flow like complex fluids[J]. Nature, 2017, 551(7680): 360-363.
|
9 |
Wang Z, Afacan A, Nandakumar K, et al. Porosity distribution in random packed columns by gamma ray tomography[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(3): 209-219.
|
10 |
Demoisson F, Ariane M, Leybros A, et al. Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials[J]. The Journal of Supercritical Fluids, 2011, 58(3): 371-377.
|
11 |
Uebel K, Rößger P, Prüfert U, et al. CFD-based multi-objective optimization of a quench reactor design[J]. Fuel Processing Technology, 2016, 149: 290-304.
|
12 |
Á Frías-Ferrer, Tudela I, Louisnard O, et al. Optimized design of an electrochemical filter-press reactor using CFD methods[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 270-281.
|
13 |
Dixon A G, Nijemeisland M. CFD as a design tool for fixed-bed reactors[J]. Ind. Eng. Chem. Res., 2001, 40(23): 5246-5254.
|
14 |
Ding J, Wang X, Zhou X, et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production[J]. Bioresour. Technol., 2010, 101(18): 7005-7013.
|
15 |
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J].Géotechnique, 1979, 29(1): 47-65.
|
16 |
Baniasadi M, Peters B. Resolving multiphase flow through packed bed of solid particles using extended discrete element method with porosity calculation[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11996-12008.
|
17 |
Boccardo G, Augier F, Haroun Y, et al. Validation of a novel open-source work-flow for the simulation of packed-bed reactors[J]. Chemical Engineering Journal, 2015, 279: 809-820.
|
18 |
Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling[J]. Applied Mechanics Reviews, 1986, 39(1): 1-23.
|
19 |
Lan X, Xu C, Gao J, et al. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds[J]. Chemical Engineering Science, 2012, 69(1): 419-430.
|
20 |
Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, 129(1/2/3): 72-85.
|
21 |
He Y, Xiao F Z, Luo Z H. Numerical modeling of the cavity phenomenon and its elimination way in rectangular radial moving bed reactor[J]. Powder Technology, 2015, 274: 28-36.
|
22 |
Bertuola D, Volpato S, Canu A, et al. Prediction of segregation in funnel and mass flow discharge[J]. Chemical Engineering Science, 2016, 150: 16-25.
|
23 |
Tian T, Su J, Zhan J, et al. Discrete and continuum modeling of granular flow in silo discharge[J]. Particuology, 2018, 36: 127-138.
|
24 |
Du W, Bao X, Xu J, et al. Computational fluid dynamics (CFD) modeling of spouted bed: assessment of drag coefficient correlations [J]. Chemical Engineering Science, 2006, 61(14): 1401-1420.
|
25 |
He Y L, Lim C J, Grace J R, et al. Measurements of voidage profiles inspouted beds[J]. The Canadian Journal of Chemical Engineering, 1994, 72(2): 229-234.
|
26 |
Lundberg J. CFD study of a bubbling fluidized bed[D]. Norway: Telemark University College, 2008.
|
27 |
Lun C K K, Savage S B, Jeffrey D J, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield[J]. Journal of Fluid Mechanics, 2006, 140: 223-256.
|
28 |
Gidaspow D. Multiphase Flow and Fluidization[M]. Boston: Academic Press, 1994.
|
29 |
Schaeffer D G. Instability in the evolution equations describing incompressible granular flow[J]. Journal of Differential Equations, 1987, 66: 19-50.
|
30 |
Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds, kinetic theory approach[C]// Fluidization Ⅶ. Proceedings of the 7th Engineering Foundation Conference on Fluidization. 1992: 75-82.
|
31 |
Johnson P C, Nott P, Jackson R. Frictional-collisional equations of motion for particulate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210: 501-535.
|
32 |
Ogawa S, Umemure A, Oshima N. On the equation of fully fluidized granular materials[J]. Journal of Applied Mathematics and Physics, 1980, 31: 483-493.
|
33 |
Lebowitz J L. Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres[J]. Journal of the Physical Review, 1964, 133: A895-A899.
|