化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3362-3371.DOI: 10.11949/0438-1157.20191527
收稿日期:
2019-12-16
修回日期:
2020-03-26
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
张小松
作者简介:
刘正浩(1994—),男,硕士研究生,基金资助:
Zhenghao LIU1,2(),Xiaosong ZHANG1,2(),Changling WANG1,2,Muxing ZHANG1
Received:
2019-12-16
Revised:
2020-03-26
Online:
2020-07-05
Published:
2020-07-05
Contact:
Xiaosong ZHANG
摘要:
为改善相变储能过程中石蜡(PA)的熔化性能,向PA中添加少量膨胀石墨(EG)制备了4种配比的石蜡/膨胀石墨复合相变材料(PA-EG)。通过热物性分析筛选出合适配比的PA-EG,并对其和PA在水平管壳式相变储能单元中的熔化过程进行了实验研究。根据相变材料的温度场变化以及加权法计算得到的熔化分数变化,对比分析了添加EG前后PA的熔化性能,并探究了加热温度对相变材料熔化性能的影响。结果表明,PA-EG3的热导率比PA高了7倍,且两者的相变温度和潜热相差不大。PA-EG3熔化过程中的自然对流效应弱于PA,但是较高的热导率能够显著改善相变储能单元中下部的熔化,使得其整体熔化速度快于PA。当加热温度为80℃时,PA-EG3的熔化过程比PA缩短了78.16%。此外,降低加热温度会使PA和PA-EG3的完全熔化时间都显著增加,但相同条件下PA-EG3的增加幅度更小。
中图分类号:
刘正浩, 张小松, 王昌领, 张牧星. 石蜡与石蜡/膨胀石墨熔化性能的实验研究[J]. 化工学报, 2020, 71(7): 3362-3371.
Zhenghao LIU, Xiaosong ZHANG, Changling WANG, Muxing ZHANG. Experimental study on melting performance of paraffin and paraffin/expanded graphite[J]. CIESC Journal, 2020, 71(7): 3362-3371.
1 | Seddegh S, Wang X, Henderson A D, et al. Solar domestic hot water systems using latent heat energy storage medium: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 517-533. |
2 | Li C, Zhang B, Xie B, et al. Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater[J]. Sustainable Cities and Society, 2019, 44: 458-464. |
3 | Jin X, Medina M A, Zhang X. Numerical analysis for the optimal location of a thin PCM layer in frame walls[J]. Applied Thermal Engineering, 2016, 103: 1057-1063. |
4 | Veerakumar C, Sreekumar A. Thermo-physical investigation and experimental discharge characteristics of lauryl alcohol as a potential phase change material for thermal management in buildings[J]. Renewable Energy, 2020, 148: 492-503. |
5 | Melone L, Altomare L, Cigada A, et al. Phase change material cellulosic composites for the cold storage of perishable products: from material preparation to computational evaluation[J]. Applied Energy, 2012, 89(1): 339-346. |
6 | 章学来, 徐笑锋, 周孙希, 等. 蓄冷技术在冷链物流中的研究进展[J]. 制冷与空调, 2017, 17(12): 88-92. |
Zhang X L, Xu X F, Zhou S X, et al. Research progress of cold storage technology in cold chain logistics[J]. Refrigeration and Air-Conditioning, 2017, 17(12): 88-92. | |
7 | Agyenim F, Hewitt N. The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation[J]. Energy and Buildings, 2010, 42(9): 1552-1560. |
8 | Teamah H M, Lightstone M F. Numerical study of the electrical load shift capability of a ground source heat pump system with phase change thermal storage[J]. Energy and Buildings, 2019, 199: 235-246. |
9 | Lazrak A, Fourmigue J, Robin J. An innovative practical battery thermal management system based on phase change materials: numerical and experimental investigations[J]. Applied Thermal Engineering, 2018, 128: 20-32. |
10 | Diani A, Campanale M. Transient melting of paraffin waxes embedded in aluminum foams: experimental results and modeling[J]. International Journal of Thermal Sciences, 2019, 144: 119-128. |
11 | Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management, 2004, 45(9): 1597-1615. |
12 | Avci M, Yazici M Y. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit[J]. Energy Conversion and Management, 2013, 73: 271-277. |
13 | Zhang L, Dong J. Experimental study on the thermal stability of a paraffin mixture with up to 10, 000 thermal cycles[J]. Thermal Science and Engineering Progress, 2017, 1: 78-87. |
14 | Wu S, Zhu D, Zhang X, et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J]. Energy & Fuels, 2010, 24(3): 1894-1898. |
15 | Karaipekli A, Bicer A, Sari A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes[J]. Energy Conversion and Management, 2017, 134: 373-381. |
16 | Ebadi S, Tasnim S H, Aliabadi A A, et al. Melting of nano-PCM inside a cylindrical thermal energy storage system: numerical study with experimental verification[J]. Energy Conversion and Management, 2018, 166: 241-259. |
17 | Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins[J]. Solar Energy, 2009, 83(9): 1509-1520. |
18 | Kazemi M, Hosseini M J, Ranjbar A A, et al. Improvement of longitudinal fins configuration in latent heat storage systems[J]. Renewable Energy, 2018, 116: 447-457. |
19 | Jahangiri A, Ahmadi O. Numerical investigation of enhancement in melting process of PCM by using internal fins[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6): 2073-2080. |
20 | Darzi A R, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus[J]. Applied Mathematical Modelling, 2012, 36(9): 4080-4086. |
21 | Yazici M Y, Avci M, Aydin O, et al. Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: an experimental study[J]. Solar Energy, 2014, 101: 291-298. |
22 | Cao X, Yuan Y, Xiang B, et al. Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit[J]. Sustainable Cities and Society, 2018, 38: 571-581. |
23 | 张正国, 邵刚, 方晓明. 石蜡/膨胀石墨复合相变储热材料的研究[J]. 太阳能学报, 2005, (5): 698-702. |
Zhang Z G, Shao G, Fang X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Acta Energiae Solaris Sinica, 2005, (5): 698-702. | |
24 | Sarı A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27(8): 1271-1277. |
25 | 夏莉. 复合相变储能材料的研制与潜热储能中热物理现象的研究[D]. 上海: 上海交通大学, 2011. |
Xia L. Preparation of composite phase change material and study on the thermo-physical phenomena in the latent thermal energy storage[D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
26 | 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837. |
Hu X D, Gao X N, Li D L, et al. Performance of paraffin/expanded graphite composite phase change materials[J]. CIESC Journal, 2013, 64(10): 3831-3837. | |
27 | 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12): 61-64. |
Hua J S, Zhang J, Zhang Y, et al. Study on thermal properties and shape-stabilizing of expanded graphite/paraffin composite phase change material[J]. Materials Review, 2016, 30(12): 61-64. | |
28 | 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683. |
Zhai T Y, Li T X, Wu S, et al. Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity[J]. Chinese Science Bulletin, 2018, 63(7): 674-683. | |
29 | Xie M, Huang J, Ling Z, et al. Improving the heat storage/release rate and photo-thermal conversion performance of an organic PCM/expanded graphite composite block[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110081. |
30 | 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564. |
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564. | |
31 | Wu W X, Wu W, Wang S F. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications[J]. Applied Energy, 2019, 236: 10-21. |
32 | 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297. |
Zhou S X, Zhang X L, Liu S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297. | |
33 | Song Y, Zhang N, Jing Y, et al. Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage[J]. Energy, 2019, 189: 116175. |
34 | Jeon J, Park J H, Wi S, et al. Thermal performance enhancement of a phase change material with expanded graphite via ultrasonication[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 437-442. |
35 | 任学明, 沈鸿烈, 杨艳. 膨胀石墨/石蜡复合相变材料的碳纳米管掺杂改性研究[J]. 功能材料, 2019, 50(6): 6008-6012. |
Ren X M, Shen H L, Yang Y. Study on the preparation and characterization of CNTs modified expanded graphite/paraffin composite PCM[J]. Journal of Functional Materials, 2019, 50(6): 6008-6012. | |
36 | Wang Q Q, Zhou D, Chen Y M, et al. Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites[J]. Renewable Energy, 2020, 147(1): 1131-1138. |
37 | Seddegh S, Wang X, Joybari M M, et al. Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems[J]. Energy, 2017, 137: 69-82. |
38 | 张钦真. 膨胀石墨/石蜡复合相变蓄热材料实验研究[D]. 内蒙古: 内蒙古科技大学, 2013. |
Zhang Q Z. Experiment research of the expanded graphite/paraffin composite phase change thermal storage materials[D]. Inner Mongolia: Inner Mongolia University of Science & Technology, 2013. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||