1 |
Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437.
|
2 |
Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030.
|
3 |
Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes[J]. Nature Nanotechnology, 2007, 2(2): 87-94.
|
4 |
Kataoka T, Tsuru T, Nakao S I, et al. Permeation equations developed for prediction of membrane performance in pervaporation, vapor permeation and reverse osmosis based on the solution-diffusion model[J]. Journal of Chemical Engineering of Japan, 1991, 24(3): 326-333.
|
5 |
金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56.
|
|
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56.
|
6 |
朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(2/3): 223-232.
|
|
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62: 223-232.
|
7 |
Li J H, Zhang J, Ge W, et al. Multi-scale methodology for complex systems[J]. Chemical Engineering Science, 2004, 59(8): 1687-1700.
|
8 |
Huang W, Li J, Edwards P P. Mesoscience: exploring the common principle at mesoscales[J]. National Science Review, 2017, 5(3): 321-326.
|
9 |
Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
|
10 |
Wang L, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522.
|
11 |
Zhao J, He G W, Liu G H, et al. Manipulation of interactions at membrane interfaces for energy and environmental applications[J]. Progress in Polymer Science, 2018, 80: 125-152.
|
12 |
Liu G P, Jin W Q. Graphene oxide membrane for molecular separation: challenges and opportunities[J]. Science China-Materials, 2018, 61(8): 1021-1026.
|
13 |
Zhao J, Jin W Q. Manipulation of confined structure in alcohol-permselective pervaporation membranes[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1616-1626.
|
14 |
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(0023-074X): 223.
|
15 |
Ma R, Cao D, Zhu C, et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice[J]. Nature, 2020, 577(7788): 60-63.
|
16 |
Yan H L, Wu F, Xue Y F, et al. Water adsorption and transport on oxidized two-dimensional carbon materials[J]. Chemistry-a European Journal, 2019, 25(16): 3969-3978.
|
17 |
Antony A C, Liang T, Sinnott S B. Nanoscale structure and dynamics of water on Pt and Cu surfaces from MD simulations[J]. Langmuir, 2018, 34(39): 11905-11911.
|
18 |
Bampoulis P, Witteveen J P, Kooij E S, et al. Structure and dynamics of confined alcohol-water mixtures[J]. ACS Nano, 2016, 10(7): 6762-6768.
|
19 |
Severin N, Sokolov I M, Rabe J P. Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore[J]. Langmuir, 2014, 30(12): 3455-3459.
|
20 |
Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7867-7880.
|
21 |
Zhao M, Yang X. Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores[J]. Journal of Physical Chemistry C, 2015, 119(37): 21664-21673.
|
22 |
Lu Y M, Chen W, Wang Y L, et al. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid[J]. Physical Chemistry Chemical Physics, 2020, 22(4): 1820-1825.
|
23 |
Mao X W, Brown P, Cervinka C, et al. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces[J]. Nature Materials, 2019, 18(12): 1350-1357.
|
24 |
Wang C, Qian C, Li Z, et al. Molecular insights into the abnormal wetting behavior of ionic liquids induced by the aolidified ionic layer[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8028-8036.
|
25 |
Wang S, Xie Y, He G, et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations[J]. Angewandte Chemie International Edition, 2017, 56(45): 14246-14251.
|
26 |
Cao W, Tow G M, Lu L, et al. Diffusion of CO2/CH4 confined in narrow carbon nanotube bundles[J]. Molecular Physics, 2016, 114(16/17): 2530-2540.
|
27 |
Wu X, Cui X, Wu W, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18524-18529.
|
28 |
Zhao D, Zhao J, Ji Y, et al. Facilitated water-selective permeation via PEGylation of graphene oxide membrane[J]. Journal of Membrane Science, 2018, 567: 311-320.
|
29 |
Dou H, Jiang B, Xu M, et al. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane deparation[J]. Angewandte Chemie International Edition, 2019, 58(39): 13969-13975.
|
30 |
Liu R, Arabale G, Kim J, et al. Graphene oxide membrane for liquid phase organic molecular separation[J]. Carbon, 2014, 77: 933-938.
|
31 |
Yeh T M, Wang Z, Mahajan D, et al. High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers[J]. Journal of Materials Chemistry A, 2013, 1(41): 12998-13003.
|
32 |
Tang Y P, Paul D R, Chung T S. Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol[J]. Journal of Membrane Science, 2014, 458: 199-208.
|
33 |
Hung W S, An Q F, De Guzman M, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68: 670-677.
|
34 |
Huang K, Liu G, Shen J, et al. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates[J]. Advanced Functional Materials, 2015, 25(36): 5809-5815.
|
35 |
Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100.
|
36 |
Zhao S, Hu Y, Yu X, et al. Surface wettability effect on fluid transport in nanoscale slit pores[J]. AIChE Journal, 2017, 63(5): 1704-1714.
|
37 |
Chen G, Zhu H, Hang Y, et al. Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach[J]. AIChE Journal, 2019, 65(11): e16773.
|