化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4425-4432.DOI: 10.11949/0438-1157.20201769
收稿日期:
2020-12-09
修回日期:
2021-03-16
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
胡定华
作者简介:
林肯(1995—),男,硕士研究生,基金资助:
Ken LIN(),Xiaoyong XU,Qiang LI,Dinghua HU()
Received:
2020-12-09
Revised:
2021-03-16
Online:
2021-08-05
Published:
2021-08-05
Contact:
Dinghua HU
摘要:
在石蜡(PA)中复合添加膨胀石墨(EG)是提高石蜡基相变材料导热性能的一种常见方法,准确预测PA-EG复合相变材料的热导率对于其应用十分重要。通过对EG质量分数小于20%的PA-EG复合相变材料微观结构特征的分析,建立了基于EG纤维在PA中均匀分散的微观结构几何模型,数值模拟了完全均匀分散PA-EG单元体的相变过程,分析了EG质量分数及其粒径对PA-EG复合相变材料等效热导率的影响规律,并提出了可适用于不同制备方法的PA-EG复合相变材料热导率预测模型。模型预测结果与已报道EG质量分数小于20%的PA-EG复合相变材料实验结果能较好吻合,误差小于15.1%。
中图分类号:
林肯, 许肖永, 李强, 胡定华. 石蜡-膨胀石墨复合相变材料热导率研究[J]. 化工学报, 2021, 72(8): 4425-4432.
Ken LIN, Xiaoyong XU, Qiang LI, Dinghua HU. Study on thermal conductivity of paraffin-expanded graphite composite phase change materials[J]. CIESC Journal, 2021, 72(8): 4425-4432.
Materials | Density/(kg/L) | Thermal conductivity/ (W/(m·K)) | Melting latent heat/(kJ/kg) | Specific heat capacity/ (kJ/(kg·K)) |
---|---|---|---|---|
PA | 0.746 | 0.127 | 189.7 | 1.59 |
EG | 2.25 | 151 | — | 0.71 |
表1 材料物性
Table 1 Materials properties
Materials | Density/(kg/L) | Thermal conductivity/ (W/(m·K)) | Melting latent heat/(kJ/kg) | Specific heat capacity/ (kJ/(kg·K)) |
---|---|---|---|---|
PA | 0.746 | 0.127 | 189.7 | 1.59 |
EG | 2.25 | 151 | — | 0.71 |
图7 PA-EG复合相变材料实验结果推导分散系数α[10,14,17,19,21,35-36]
Fig.7 Deduction of dispersion coefficient α from experimental results of PA-EG composite phase change materials[10,14,17,19,21,35-36]
1 | 李响. 一种弹载电子产品储热装置的设计与试验[J]. 电子机械工程, 2018, 34(2): 13-16. |
Li X. Design and test of a thermal energy storage device in missile electronics[J]. Electro-Mechanical Engineering, 2018, 34(2): 13-16. | |
2 | Tomizawa Y, Sasaki K, Kuroda A, et al. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices[J]. Applied Thermal Engineering, 2016, 98: 320-329. |
3 | 孙守斌, 姚华, 刘常鹏, 等. 钢铁行业中低温烟气余热相变储热装置特性分析[J]. 储能科学与技术, 2020, 9(3): 730-734. |
Sun S B, Yao H, Liu C P, et al. Characteristics analysis of the phase change thermal storage equipment for medium and low temperature flue gas from steel industry[J]. Energy Storage Science and Technology, 2020, 9(3): 730-734. | |
4 | Elefsiniotis A, Becker T, Schmid U. Thermoelectric energy harvesting using phase change materials (PCMs) in high temperature environments in aircraft[J]. Journal of Electronic Materials, 2014, 43(6): 1809-1814. |
5 | 张伟. 基于球形封装的相变储热供暖装置蓄释热性能的研究[D]. 包头: 内蒙古科技大学, 2020. |
Zhang W. Research on heat storage and release performance of phase change heat storage and heating device based on spherical package[D]. Baotou, Inner Mongolia University of Science & Technology, 2020. | |
6 | Li Z Y, Fu X Y, Pan D, et al. Research on thermal storage performance of solar phase change thermal storage integrated device[J]. Procedia Engineering, 2017, 205: 1357-1363. |
7 | 孙婉纯, 冯锦新, 张正国, 等. 相变储热技术用于被动式建筑节能的研究进展[J]. 化工进展, 2020, 39(5): 1824-1834. |
Sun W C, Feng J X, Zhang Z G, et al. Research progress of phase change heat storage technology for passive energy conservation in buildings[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1824-1834. | |
8 | Wang Z H, Wang F H, Ma Z J, et al. Performance evaluation of a novel frost-free air-source heat pump integrated with phase change materials (PCMs) and dehumidification[J]. Energy Procedia, 2017, 121: 134-141. |
9 | 周慧琳. 矩形单元内石蜡熔化/凝固过程传热特性研究及结构优化[D]. 济南: 山东大学, 2020. |
Zhou H L. Melting and solidification heat transfer characteristics of paraffin in rectangular unit and structure optimization[D]. Jinan: Shandong University, 2020. | |
10 | 刘正浩, 张小松, 王昌领, 等. 石蜡与石蜡/膨胀石墨熔化性能的实验研究[J]. 化工学报, 2020, 71(7): 3362-3371. |
Liu Z H, Zhang X S, Wang C L, et al. Experimental study on melting performance of paraffin and paraffin/expanded graphite[J]. CIESC Journal, 2020, 71(7): 3362-3371. | |
11 | 徐祥贵, 王丽琼, 王君雷, 等. 泡沫金属复合PCM微结构传热储热过程模拟[J]. 化工学报, 2021, 72(2): 956-964. |
Xu X G, Wang L Q, Wang J L, et al. Simulation on heat transfer and thermal storage processes of foamed metal composite PCM microstructure[J]. CIESC Journal, 2021, 72(2): 956-964. | |
12 | 张涛, 余建祖, 高红霞. TPS法测定泡沫铜/石蜡复合相变材料热物性[J]. 太阳能学报, 2010, 31(5): 604-609. |
Zhang T, Yu J Z, Gao H X. Measurement of thermal parameters of copper foam/paraffins composite pcm using transient plane source(tps) method[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 604-609. | |
13 | Keshteli A N, Sheikholeslami M. Influence of Al2O3 nanoparticle and Y-shaped fins on melting and solidification of paraffin[J]. Journal of Molecular Liquids, 2020, 314: 113798. |
14 | Kenisarin M, Mah kamov K, Kahwash F, et al. Enhancing thermal conductivity of paraffin wax 53—57℃ using expanded graphite[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110026. |
15 | 王文健. 基于复合相变材料的锂离子电池热管理系统传热强化研究[D]. 徐州: 中国矿业大学, 2018. |
Wang W J. Investigation on the heat transfer enhancement of lithium ion battery thermal management system based on composite phase change material[D]. Xuzhou: China University of Mining and Technology, 2018. | |
16 | 施曙东. 膨胀石墨微观结构调控及其与石蜡复合相变储能材料研究[J]. 功能材料, 2018, 49(1): 1064-1070. |
Shi S D. Microstructure adjustment of expanded graphite and its influence on thermal performance of composite paraffin/expanded graphite phase-change material[J]. Journal of Functional Materials, 2018, 49(1): 1064-1070. | |
17 | Hua J S, Yuan C, Zhao X, et al. Structure and thermal properties of expanded graphite/paraffin composite phase change material[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(1): 86-93. |
18 | Ren X M, Shen H L, Yang Y, et al. Study on the properties of a novel shape-stable epoxy resin sealed expanded graphite/paraffin composite PCM and its application in buildings[J]. Phase Transitions, 2019, 92(6): 581-594. |
19 | 李亚鹏. 膨胀石墨基体影响石蜡储放热性能的实验研究[D]. 济南: 山东大学, 2020. |
Li Y P. Experimental study on the effect of expanded graphite on the storage and release performance of paraffin[D]. Jinan: Shandong University, 2020. | |
20 | Nofal M, Al-Hallaj S, Pan Y Y. Experimental investigation of phase change materials fabricated using selective laser sintering additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 44: 91-101. |
21 | 陈正浩. 石蜡/月桂酸: 膨胀石墨复合相变材料的制备及性能研究[D]. 包头: 内蒙古科技大学, 2020. |
Chen Z H. Preparation and properties of paraffin-expanded graphite and lauric acid-expanded graphite composite phase change materials[D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
22 | Wang X L, Li B, Qu Z G, et al. Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119853. |
23 | 徐众, 万书权, 邓建梅, 等. 石蜡/不同粒径膨胀石墨复合相变材料的制备及性能研究[J]. 化工新型材料, 2017, 45(5): 57-60. |
Xu Z, Wan S Q, Deng J M, et al. Preparation and performance study on phase change material composite of paraffin/different particle sized expanded graphite[J]. New Chemical Materials, 2017, 45(5): 57-60. | |
24 | Alzoubi M F, Khateeb S, Al-Hallaj S. Modeling of compression curves of phase change graphite composites using Maxwell and Kelvin models[J]. Journal of Composite Materials, 2016, 50(8): 1123-1135. |
25 | 孙文鸽, 韩磊, 吴志根. 膨胀石墨/石蜡相变复合材料有效热导率的数值计算[J]. 复合材料学报, 2015, 32(6): 1596-1601. |
Sun W G, Han L, Wu Z G. Numerical calculation of effective thermal conductivity coefficients of expanded graphite/paraffin phase change composites[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1596-1601. | |
26 | 李泽群, 杨建国. 石墨/石蜡相变材料在电池热管理中的应用[J]. 电源技术, 2020, 44(9): 1287-1292. |
Li Z Q, Yang J G. Application of graphite/paraffin phase change materials in battery thermal management[J]. Chinese Journal of Power Sources, 2020, 44(9): 1287-1292. | |
27 | Abdelrazeq H, Sobolčiak P, Al-Ali Al-Maadeed M, et al. Recycled polyethylene/paraffin wax/expanded graphite based heat absorbers for thermal energy storage: an artificial aging study[J]. Molecules, 2019, 24(7): 1217. |
28 | 高志勇, 张晚佳. 膨胀石墨的制备方法及应用研究进展[J]. 贵州大学学报(自然科学版), 2018, 35(6): 13-19. |
Gao Z Y, Zhang W J. Preparation and application of expanded graphite: a review[J]. Journal of Guizhou University (Natural Sciences), 2018, 35(6): 13-19. | |
29 | Zhao Y Q, Jin L, Zou B Y, et al. Expanded graphite - Paraffin composite phase change materials: effect of particle size on the composite structure and properties[J]. Applied Thermal Engineering, 2020, 171: 115015. |
30 | 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47. |
Jiang G W, Huang J H. Preparation and thermal management of expanded graphite/paraffin composite for Li-ion battery[J]. Journal of Materials Engineering, 2017, 45(7): 41-47. | |
31 | 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12): 61-64, 75. |
Hua J S, Zhang J, Zhang Y, et al. Study on thermal properties and shape-stabilizing of expanded graphite/paraffin composite phase change material[J]. Materials Review, 2016, 30(12): 61-64, 75. | |
32 | 李彦, 祗明亮, 尤国有, 等. 化学氧化法制备膨胀石墨的研究进展[J]. 应用化工, 2020, 49(11): 2864-2870. |
Li Y, Di M L, You G Y, et al. Advances in the preparation of expanded graphite by chemical oxidation[J]. Applied Chemical Industry, 2020, 49(11): 2864-2870. | |
33 | 周业涛, 关振群, 顾元宪. 求解相变传热问题的等效热容法[J]. 化工学报, 2004, 55(9): 1428-1433. |
Zhou Y T, Guan Z Q, Gu Y X. Equivalent heat capacity method for solution of heat transfer with phase change[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(9): 1428-1433. | |
34 | Wang Q Q, Zhou D, Chen Y M, et al. Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites[J]. Renewable Energy, 2020, 147: 1131-1138. |
35 | 黄睿, 方晓明, 凌子夜, 等. 高性能三水醋酸钠-尿素-膨胀石墨混合相变材料的制备及其在电地暖中的应用性能[J]. 化工学报, 2020, 71(6): 2713-2723. |
Huang R, Fang X M, Ling Z Y, et al. Preparation of high-performance sodium acetate trihydrate-urea-expanded graphite mixed phase change material and its application performance in electric floor heating[J]. CIESC Journal, 2020, 71(6): 2713-2723. | |
36 | 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564. |
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[9] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||